Publikationen
Zeige Ergebnisse 41 - 60 von 145
Shupe *, M. D., Rex, M., Blomquist, B., Persson, P. O. G., Schmale, J., Uttal, T., Althausen, D., Angot, H., Archer, S., Bariteau, L., Beck, I., Bilberry, J., Bucci, S., Buck, C., Boyer, M., Brasseur, Z., Brooks, I. M., Calmer, R., Cassano, J., ... Yue, F. (2022). Overview of the MOSAiC expedition—Atmosphere. Elementa: Science of the Anthropocene, 10, Artikel 1. https://doi.org/10.1525/elementa.2021.00060
McConnell, J. R., Chellman, N. J., & Stohl, A. (2022). Black carbon attribution. Nature, 612(7941), E18-E19. https://doi.org/10.1038/s41586-022-05518-y
Michel, C., Sorteberg, A., Eckhardt, S., Weijenborg, C., Stohl, A., & Cassiani, M. (2021). Characterization of the atmospheric environment during extreme precipitation events associated with atmospheric rivers in Norway - Seasonal and regional aspects. Weather and Climate Extremes, 34, Artikel 100370. https://doi.org/10.1016/j.wace.2021.100370
Stathopoulos, V. K., Evangeliou, N., Stohl, A., Vratolis, S., Matsoukas, C., & Eleftheriadis, K. (2021). Large Circulation Patterns Strongly Modulate Long-Term Variability of Arctic Black Carbon Levels and Areas of Origin. Geophysical Research Letters, 48(19), Artikel e2021GL092876. https://doi.org/10.1029/2021GL092876
McConnell, J. R., Chellman, N. J., Mulvaney, R., Eckhardt, S., Stohl, A., Plunkett, G., Kipfstuhl, S., Freitag, J., Isaksson, E., Gleason, K. E., Brugger, S. O., McWethy, D. B., Abram, N. J., Liu, P., & Aristarain, A. J. (2021). Hemispheric black carbon increase after the 13th-century Māori arrival in New Zealand. Nature, 598, 82-85. https://doi.org/10.1038/s41586-021-03858-9
Stevens, B., Bony, S., Farrell, D., Ament, F., Blyth, A., Fairall, C., Karstensen, J., Quinn, P. K., Speich, S., Acquistapace, C., Aemisegger, F., Albright, A. L., Bellenger, H., Bodenschatz, E., Caesar, K. A., Chewitt-Lucas, R., De Boer, G., Delanoë, J., Denby, L., ... Zöger, M. (2021). EUREC4A. Earth System Science Data, 13(8), 4067-4119. https://doi.org/10.5194/essd-13-4067-2021
Weigel, R., Mahnke, C., Baumgartner, M., Dragoneas, A., Vogel, B., Ploeger, F., Viciani, S., D'Amato, F., Bucci, S., Legras, B., Luo, B., & Borrmann, S. (2021). In situ observation of new particle formation (NPF) in the tropical tropopause layer of the 2017 Asian monsoon anticyclone - Part 1: Summary of StratoClim results. Atmospheric Chemistry and Physics, 21(15), 11689-11722. https://doi.org/10.5194/acp-21-11689-2021
Kostinek, J., Roiger, A., Eckl, M., Fiehn, A., Luther, A., Wildmann, N., Klausner, T., Fix, A., Knote, C., Stohl, A., & Butz, A. (2021). Estimating Upper Silesian coal mine methane emissions from airborne in situ observations and dispersion modeling. Atmospheric Chemistry and Physics, 21(11), 8791–8807. https://doi.org/10.5194/acp-21-8791-2021
Borhani, F., Motlagh, M. S., Stohl, A., Rashidi, Y., & Ehsani, A. H. (2021). Changes in short-lived climate pollutants during the COVID-19 pandemic in Tehran, Iran. Environmental Monitoring and Assessment, 193(6), Artikel 331. https://doi.org/10.1007/s10661-021-09096-w
Cairo, F., De Muro, M., Snels, M., Di Liberto, L., Bucci, S., Legras, B., Kottayil, A., Scoccione, A., & Ghisu, S. (2021). Lidar observations of cirrus clouds in Palau (7°33′ N, 134°48′ E). Atmospheric Chemistry and Physics, 21(10), 7947-7961. https://doi.org/10.5194/acp-21-7947-2021
Jia, M., Evangeliou, N., Eckhardt, S., Huang, X., Gao, J., Ding, A., & Stohl, A. (2021). Black Carbon Emission Reduction Due to COVID‐19 Lockdown in China. Geophysical Research Letters, 48(8), Artikel e2021GL093243. https://doi.org/10.1029/2021GL093243
Ruppel, M. M., Eckhardt, S., Pesonen, A., Mizohata, K., Oinonen, M. J., Stohl, A., Andersson, A., Jones, V., Manninen, S., & Gustafsson, Ö. (2021). Observed and Modeled Black Carbon Deposition and Sources in the Western Russian Arctic 1800−2014. Environmental Science & Technology, 55(8), 4368-4377. https://doi.org/10.1021/acs.est.0c07656
Arienzo, M. M., Legrand, M., Preunkert, S., Stohl, A., Chellman, N., Eckhardt, S., Gleason, K. E., & McConnell, J. R. (2021). Alpine Ice‐Core Evidence of a Large Increase in Vanadium and Molybdenum Pollution in Western Europe During the 20th Century. Journal of geophysical research : JGR ; an internat. quarterly. D. Atmospheres, 126(4), Artikel e2020JD033211. https://doi.org/10.1029/2020JD033211
Evangeliou, N., Platt, S. M., Myhre, C. L., Laj, P., Alados-Arboledas, L., Backman, J., Brem, B. T., Fiebig, M., Flentje, H., Marinoni, A., Pandolfi, M., Yus-Diez, J., Prats, N., Putaud, J. P., Sellegri, K., Sorribas, M., Eleftheriadis, K., Vratolis, S., Wiedensohler, A., & Stohl, A. (2021). Changes in black carbon emissions over Europe due to COVID-19 lockdowns. Atmospheric Chemistry and Physics, 21(4), 2675-2692. https://doi.org/10.5194/acp-21-2675-2021
Stephan, C. C., Schnitt, S., Schulz, H., Bellenger, H., de Szoeke, S. P., Acquistapace, C., Baier, K., Dauhut, T., Laxenaire, R., Morfa-Avalos, Y., Person, R., Melendez, E. Q., Bagheri, G., Bock, T., Daley, A., Guettler, J., Helfer, K. C., Los, S. A., Neuberger, A., ... Stevens, B. (2021). Ship- and island-based atmospheric soundings from the 2020 EUREC(4)A field campaign. Earth System Science Data, 13(2), 491-514. https://doi.org/10.5194/essd-13-491-2021
Plach, A., Vinther, B. M., Nisancioglu, K. H., Vudayagiri, S., & Blunier, T. (2021). Greenland climate simulations show high Eemian surface melt which could explain reduced total air content in ice cores. Climate of the Past, 17(1), 317–330. https://doi.org/10.5194/cp-17-317-2021
Chipperfield, M. P., Hegglin, M. I., Montzka, S. A., Newman, P. A., Park, S., Reimann, S., Rigby, M., Stohl, A., Velders, G. J. M., Walter-Terrinoni, H., & Yao, B. (2021). Report on the Unexpected Emissions of CFC-11, World Meteorological Organization. in WMO Report (Band 1268)
Sellitto, P., Bucci, S., & Legras, B. (2020). Comparison of iss–cats and calipso–caliop characterization of high clouds in the tropics. Remote Sensing, 12(23), 1-11. Artikel 3946. https://doi.org/10.3390/rs12233946
Tichý, O., Ulrych, L., Evangeliou, N., & Stohl, A. (2020). On the tuning of atmospheric inverse methods: comparisons with the European Tracer Experiment (ETEX) and Chernobyl datasets using the atmospheric transport model FLEXPART. Geoscientific Model Development, 13(12), 5917–5934. https://doi.org/10.5194/gmd-13-5917-2020
Evangeliou, N., Grythe, H., Klimont, Z., Heyes, C., Eckhardt, S., Lopez-Aparicio, S., & Stohl, A. (2020). Atmospheric transport is a major pathway of microplastics to remote regions. Nature Communications, 11(1), Artikel 3381. https://doi.org/10.1038/s41467-020-17201-9
Zeige Ergebnisse 41 - 60 von 145