stefano.serafin(at)univie.ac.at
Josef-Holaubek-Platz 2 (UZA II), 1090 Vienna
Roomnumber: 2G556
T: +43-1-4277-537 13

- 2020: Senior Scientist, University of Vienna
- 2018: National scientific qualification (Italy), disciplines 04/A4 (Geophysics) and 02/C1 (Astronomy, Astrophysics, Earth and Planetary Sciences)
- 2018: Project leader, University of Innsbruck
- 2010: Assistant professor, University of Vienna
- 2006: Doctorate in Environmental Engineering, University of Trento (Italy)
- 2002: Project scientist, CETEMPS/University of L'Aquila (Italy)
- 2002: Degree in Environmental Science, University of Milano-Bicocca (Italy)
- Complete curriculum vitae
Research Interests
- Mountain meteorology
- Dynamic meteorology
- Numerical weather prediction
- Boundary-layer meteorology
Projects
- 2024-2028: FWF (Austrian Science Fund) Stand-alone project P 37259, "DEmonstrating Parameter Estimation with eNsemble-based Data Assimilation for Boundary-Layer modElling over mountains"
- 2018-present: TEAMx (Multi-scale transport and exchange processes in the atmosphere over mountains – Programme and experiment)
- 2018-2022: FWF (Austrian Science Fund) Stand-alone project P 30808, "Multiscale Interactions in Convection Initiation in the Alps"
- 2012-2015: FWF (Austrian Science Fund) Stand-alone project P 24726, "STABLEST: Stable boundary layer separation and turbulence"
Links
- ORCID / ResearcherID / Scopus profiles
- Department of Atmospheric and Cryospheric Sciences (ACINN), University of Innsbruck
- Department of Civil, Environmental and Mechanical Engineering, University of Trento
- CETEMPS, University of L'Aquila
Publications
Numerically consistent budgets of potential temperature, momentum, and moisture in Cartesian coordinates: application to the WRF model.
- Author(s)
- Matthias Göbel, Stefano Serafin, Mathias Walter Rotach
- Abstract
Numerically accurate budgeting of the forcing terms in the governing equations of a numerical weather prediction model is hard to achieve. Because individual budget terms are generally 2 to 3 orders of magnitude larger than the resulting tendency, exact closure of the budget can only be achieved if the contributing terms are calculated consistently with the model numerics. We present WRFlux, an open-source software that allows precise budget evaluation for the WRF model and, in comparison to existing similar tools, incorporates new capabilities. WRFlux transforms the budget equations from the terrain-following grid of the model to the Cartesian coordinate system, permitting a simplified interpretation of budgets obtained from simulations over non-uniform orography. WRFlux also decomposes the resolved advection into mean advective and resolved turbulence components, which is useful in the analysis of large-eddy simulation output. The theoretical framework of the numerically consistent coordinate transformation is also applicable to other models. We demonstrate the performance and a possible application of WRFlux with an idealized simulation of convective boundary layer growth over a mountain range. We illustrate the effect of inconsistent approximations by comparing the results of WRFlux with budget calculations using a lower-order advection operator and two alternative formulations of the coordinate transformation. With WRFlux, the sum of all forcing terms for potential temperature, water vapor mixing ratio, and momentum agrees with the respective model tendencies to high precision. In contrast, the approximations lead to large residuals: the root mean square error between the sum of the diagnosed forcing terms and the actual tendency is 1 to 3 orders of magnitude larger than with WRFlux.
- Organisation(s)
- Department of Meteorology and Geophysics
- External organisation(s)
- Leopold-Franzens-Universität Innsbruck
- Journal
- Geoscientific Model Development
- Volume
- 15
- Pages
- 669-681
- No. of pages
- 13
- ISSN
- 1991-959X
- DOI
- https://doi.org/10.5194/gmd-15-669-2022
- Publication date
- 01-2022
- Peer reviewed
- Yes
- Austrian Fields of Science 2012
- 105206 Meteorology
- ASJC Scopus subject areas
- General Earth and Planetary Sciences, Modelling and Simulation
- Portal url
- https://ucrisportal.univie.ac.at/en/publications/a65b9f24-1df7-4107-900a-aaaee048748e
