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S U M M A R Y
Recent studies show that the frequency content of continuous passive recordings contains
useful information for the study of hydraulic fracturing experiments as well as longstanding
applications in volcano and global seismology. The short-time Fourier transform (STFT) is
usually used to obtain the time–frequency representation of a seismic trace. Yet, this trans-
form has two main disadvantages, namely its fixed time–frequency resolution and spectral
leakage. Here, we describe two methods based on autoregressive (AR) models: the short-time
autoregressive method (ST-AR) and the Kalman smoother (KS). These two methods allow
for the AR coefficients to vary over time in order to follow time-varying frequency contents.
The outcome of AR methods depends mainly on the number of AR coefficients. We use a
robust approach to estimate the optimum order of the AR methods that best matches the
spectral comparison between Fourier and AR spectra. Comparing the outcomes of the three
methods on a synthetic signal, a long-period volcanic event, and microseismic data, we show
that the STFT and both AR methods are able to track fast changes in frequency content. The
STFT provides reasonable results even for noisy data using a simple and effective algorithm.
The coefficients of the AR filter are defined at all time in the case of the KS. However, its
better time resolution is slightly offset by a lower frequency resolution and its computational
complexity. The ST-AR has a high spectral resolution and the lowest sensitivity to background
noises, facilitating the identification of the various frequency components. The estimated AR
coefficients can also be used to extract parts of the signal. The study of long-term phenomena,
such as resonance frequencies, or transient events, such as long-period events, could help to
gain further insight on reservoir deformation during hydraulic fracturing experiments as well
as global or volcano seismological signals.

Key words: Time-series analysis; Fourier analysis; Downhole methods; Volcano seismology;
Computational seismology.

1 I N T RO D U C T I O N

Time–frequency analysis of seismic recordings such as from passive
microseismic experiments over geothermal, hydrocarbon or CO2 se-
questration sites or seismological observations from global, regional
or volcanological events is important to enhance our understanding
on the physical processes associated with (fluid-induced) fracturing
and fault rupture. Extraction of unconventional resource like heavy
oil relies on the injection of fluids at depth to create fractures and
enhance oil recovery. The microseismicity induced by the fractur-
ing of the reservoir is often used to monitor the fluid injection. In
the case of low permeability reservoirs, such as tight hydrocarbons,
the part of the reservoir where the permeability was increased (i.e.
the stimulated rock volume) is then assumed to correspond to the
cloud of microseismic events. These events correspond to brittle
failure mainly attributed to the reduction in effective stress, with
negative magnitudes typically between −3 and −1.

However, the total energy corresponding to the fluid injection
is orders of magnitude higher than the brittle failure energy corre-
sponding to the observed microseismicity (Maxwell et al. 2008). On
the other hand, only the recorded microseismic events are usually
included in this calculation. Other kinds of deformations, such as
tensile opening or slow slip, must account for a part of the missing
energy. Fluid injection monitoring for other applications, such as
geothermal operations, carbon capture and storage and waste water
disposal, suffers from the same limitation. As the needs in energy
are growing and climate change effects are becoming more pro-
found, other approaches are needed to improve our understanding
of reservoir deformation.

The time-varying characteristics of the frequency content of con-
tinuous, passive microseismic recordings have been shown to con-
tain useful information on the reservoir deformation happening
during fracturing experiments (Pettitt et al. 2009; Das & Zoback
2011; Tary & van der Baan 2012). Time–frequency representations
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were used by Das & Zoback (2011) to design a bandpass filter
adapted to a specific class of unconventional events (long-period
long-duration events), while Pettitt et al. (2009) show a correlation
between a decrease in the amplitude of high-frequency resonances
and the migration of the main microseismic activity, that was oth-
erwise not delineated by any microseismic event.

Many sources of resonance frequencies, corresponding to well-
defined spectral peaks, have been documented in different contexts
such as volcanoes (Chouet 1996), sedimentary basins (Bonnefoy-
Claudet et al. 2006) or even glaciers (West et al. 2010). In volcanoes,
glaciers and microseismic experiments, fluids are likely involved in
the generation process of some of the resonances. Few potential
causes have been suggested, from the repetition of periodic events
(Lees et al. 2004) and the non-linear flow of incompressible vis-
cous fluid in an irregular channel (Julian 1994), to the resonance of
fluid-filled cracks (Aki et al. 1977; Chouet 1986). An accurate esti-
mation of the dominant frequency would allow to determine either
the interevent periodicity or the physical characteristics of the fluid
and associated resonator. Analogies between volcano behaviour and
hydraulic fracturing experiments are particularly important. They
are both characterized by a family of seismic signals, encompass-
ing short-duration brittle events (volcano-tectonic and microseismic
events), long-period (LP) events and resonance frequencies. Exam-
ples of causes and interpretations of resonances recorded during
microseismic experiments can be found in Tary & van der Baan
(2012).

Time–frequency transforms are particularly appropriate for the
study of signals with non-stationary frequency contents. The most
common transform for time–frequency analysis is the short-time
Fourier transform (STFT). This transform takes the fast Fourier
transform (FFT) of successive, overlapping windows of a signal.
The windows have a fixed length irrespective of the investigated
frequencies. The STFT has however two main disadvantages. First,
due to the trade-off between time and frequency resolutions, both
resolutions are fixed and depend directly on the window size (Reine
et al. 2009). Time and frequency resolutions can be defined as the
ability to distinguish two waveforms and two spectral peaks, respec-
tively. The fixed time–frequency resolution of the STFT implies that
in order to obtain a high frequency resolution and identify very close
spectral peaks, one will not be able to know accurately the timing
of any changes in frequency due to the low time resolution.

Secondly, because methods based on the FFT assume that the
signal amplitude is zero outside the observation window (i.e. signal
windowing), the spectrum obtained using these methods is charac-
terized by a main lobe with a width proportional to the inverse of the
observation window size, and by side-lobe leakage (Harris 1978;
Hall 2006). The side-lobes around the main lobe can mask low-
amplitude spectral peaks or prevent the distinction between close
spectral peaks (Kay & Marple 1981). The choice of an appropriate
taper can decrease the side-lobes amplitude, at the expense of de-
creasing the amplitude and widening the main lobe which decreases
the spectral resolution (Hall 2006). Other transforms with variable
time–frequency resolution, like the continuous wavelet transform
(CWT; Daubechies 1992) and the S-transform (Stockwell et al.
1996), can achieve better time–frequency estimates for signals with
both low and high frequency contents. They are, however, also dis-
playing spectral smearing due to the finite size of their operator
(Hall 2006).

On the other hand, one can use a priori information to deter-
mine which spectral estimation method is suitable to each specific
case. In this study, we are interested in following the time-varying
spectra of long-lasting phenomena, such as resonance frequencies

or tremor-like signals, characterized by peaked spectra. Autore-
gressive (AR) models are suitable in this case, because AR filters
are infinite impulsive response filters whose poles corresponds to
the different modes of a resonator (Lesage et al. 2002). AR-based
methods, also known as linear prediction filters, are not prone to
the limitations of the STFT described in the previous paragraph and
are used extensively for the study of resonance frequencies (e.g.
Claerbout 1985).

Unlike FFT-based methods, AR methods assume that the signal
continues to some extent outside the observation window, improv-
ing the spectral resolution and preventing the introduction of side-
lobes (Marple 1982). The spectral resolution of AR methods is not
directly tied to the time resolution, but depends on the signal-to-
noise ratio (SNR) as well as the order of the autoregressive model
(Marple 1982; Quirk & Liu 1983). Apart from the accurate estima-
tion of spectral peaks, the decomposition of a signal in a set of AR
coefficients allows the reconstruction or the extraction of specific
harmonics from the signal. For example, the excitation function of
LP events recorded at volcanoes was obtained after deconvolution
of the harmonic part of these events (Nakano et al. 1998; Lesage
et al. 2002). The complex frequencies of AR poles can also be used
to compute a quality factor which depends on the composition of the
fluid filling the resonator (Nakano et al. 1998; Kumagai & Chouet
2000).

Hereafter, we first describe the short-time auroregressive (ST-AR)
method, an adaptation of the classical Burg method (Burg 1972) for
spectral estimation in order to follow time-varying spectra. Then
we adapt an AR method developed for biomedical applications by
Khan & Dutt (2007). This method, named Kalman smoother (KS),
is based on a recursive scheme for the Kalman filter. Both AR
methods and the STFT are finally applied to a synthetic signal, a
real microseismic data set and a LP event recorded at Misti volcano
(Lesage et al. 2002), in order to assess their performances on typical
problems encountered in seismic data analysis: time and frequency
resolutions, noise sensitivity, the ability to track fast frequency vari-
ations and their computational cost.

2 M E T H O D S

2.1 Short-time autoregressive method

The ST-AR is a combination of the STFT and autoregressive meth-
ods. AR methods are linear prediction filters using the previous
samples to predict the following ones (Claerbout 1985). The suc-
cessive values of a time-series yn are defined as the weighted sum
of the previous p values plus some noise vn following:

yn =
p∑

k=1

ak yn−k + vn, (1)

where n are the time indices, ak the weighting coefficients of the
AR filter, p the number of coefficients also called order of the filter
and vn a white noise with zero mean and variance σ 2

y .
Different techniques exist to find the coefficients of the AR filter

ak from the time-series (Kay & Marple 1981). In order to determine
the AR coefficients, we use the Burg method (Burg 1972), which
employs a recursive least-squares scheme to estimate the AR coef-
ficients from the reflection coefficients that minimize the prediction
errors (e.g. Muthuswamy & Thakor 1998; de Waele & Broersen
2000). The Burg method was preferred to the Yule–Walker method
because the latter presents more bias in spectral lines estimates, and
gives incorrect spectral estimation for time-series that are highly

 at V
ienna U

niversity L
ibrary on A

pril 11, 2014
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/
http://gji.oxfordjournals.org/


TVAR model for spectral analysis 3

periodic (Lysne & Tjostheim 1987; de Hoon et al. 1996; Schlögl
2006).

The power spectra SA is then obtained from the AR coefficients
ak and the variance of the AR model noise σ 2

y by

SA ( f ) = σy
2

∣∣1 − ∑p
k=1 ake−i2πk f/ fs

∣∣2
, (2)

where f is the dominant frequency, fs is the sampling frequency, k is
the order of the AR model controlling the frequency of the complex
sinusoid and i = √−1.

Classical AR methods use the same number of time-invariant
coefficients for the complete signal. Hence, it is assumed that the
signal frequency content is stationary over the complete duration of
the signal. We are here interested in looking at localized frequency
content and rapid changes in resonance frequencies. Using the same
idea as for the STFT, the AR method can be applied on shorter,
overlapping segments of the signal, allowing the coefficients to
change from one window to another. Using this technique we will be
able to map quick changes in the frequency content, even though the
signal frequency content is still assumed to be piecewise stationary
inside each window.

AR methods rely mainly on the number of coefficients of the AR
filter and on the position and length of the window of signal (wl)
on which the algorithm is applied (Ulrych & Bishop 1975). Too
low a number of coefficients will smooth out the estimated spectra;
conversely a high number of coefficients may introduce artificial
peaks and spectral line splitting (Kay & Marple 1979, 1981). The
order of the AR filter is then often estimated using information
theory-based criteria, such as the final prediction error or Akaike
Information Criteria (Priestley 1994). In practice however, these
criteria have been found to regularly give erroneous estimations
(Jones 1976; Berryman 1978) and the order selection eventually
requires some experience from the user. It is commonly assumed
that the AR order should not exceed N/3, where N is the number of
samples of the time-series.

To optimize these two interdependent parameters (p, wl), we
minimize the squared difference between the normalized AR power
spectral density (PSD) ŜA and Fourier PSD ŜF . SA is computed by
eqs (1) and (2) using the Burg method for a realistic set of values of
filter orders p, and window length wl, within each time segment. The
same window size and position are used to compute ŜF . We then
search for the minimum of this 2-D cost function in a least-squares
sense to determine the optimal values (Fig. 1). The minimum of the
residuals calculated using the L2-norm can be expressed as

r (p, wl ) = argmin
p,wl

||ŜF (wl ) − ŜA (p, wl ) ||2, (3)

where we dropped the dependence of ŜA and ŜF on frequency to
simplify the notations.

The application of eq. (3) leads to the selection of high AR orders
when the noise level is high. This is typically the case for the Fourier
spectra of short time-series which are strongly contaminated by side-
lobe leakage. For stationary spectral lines, a simple way to increase
the signal contribution to the frequency spectrum while decreasing
the one of random noises is to increase the window length, but
more data are not always available. On the other hand, we can use a
priori information to guide the selection of the optimal parameters.
In particular, the AR order should be high for broad-band spectra
and low for narrow-band spectra. We modify eq. (3) by including
a criterion to account for the spectral bandwidth: Nbw = Nv×� f

FNy
.

This criterion corresponds to the width of the computed spectra,

Figure 1. Example of optimal parameters selection for 15 min of signals
from a microseismic experiment. (a) Raw data and time–frequency repre-
sentation obtained using the ST-AR method with an overlap of 90 per cent
and the optimal parameters given in (b). (b) 2-D cost function. The minimum
of the 2-D cost function is indicated. The optimal order of the AR filter is
32 and the optimal window length is ∼8 s.

which is the number of values Nv above a certain frequency times
the frequency bin �f (sampling frequency divided by the number
of points of the Fourier spectra), divided by the Nyquist frequency
FNy. Here, Nv corresponds to all values of the spectrum above the
full-width half-maximum (FWHM), that is, at –6 dB of the log-
spectrum. The criterion Nbw is then incorporated into a Gaussian
function, acting as a damping factor depending on the AR order p.
Eq. (3) is then modified as

r (p, wl ) = argmin
p,wl

∥∥∥
[

ŜF (wl ) − ŜA (p, wl )
]

× D
∥∥∥

2
,

with D = 1.1 − e
− [p−(Nbw×pmax)]2

2×(0.5pmax)2 , (4)

and where pmax is the maximum value of the AR order p. The
number 1.1 prevents the Gaussian function to reduce the residuals
too strongly for a range of p. This value ensures the weighting
to vary between 0.1 and 1.1. The factor Nbw × pmax controls the
position of the average of the Gaussian on the p-axis, while 0.5pmax

controls its width.
Finally, the AR coefficients for the model order p and window

length wl that minimizes eq. (4) provide the desired time–frequency
representation SA(f, t) by assigning each individual spectrum to the
time of each segment (Fig. 2). In the next section, we describe
another AR method based on a recursive scheme for the Kalman
filter. This method has the advantage to define AR coefficients at
all data samples, increasing significantly the time resolution.
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Figure 2. Flow chart step-by-step of the ST-AR algorithm. The order of the
AR filter is indicated by p and the window length by wl.

2.2 Kalman smoother

2.2.1 Description of the state-space model

In the following equations, scalars are represented by small letters,
matrices by capital letters, vectors by bold letters, transpose matrices
or vectors by an apostrophe, and estimates by a hat. In order to
improve the time resolution of the ST-AR, an alternative is to treat
the autoregressive coefficients as time dependent variables. Eq. (1)
then becomes

yn =
p∑

k=1

ak
n yn−k + vn, (5)

where ak
n are the time-varying coefficients of the AR filter.

Two main approaches exist to introduce time-varying coefficients
in the classical AR methods, namely the stochastic and determinis-
tic regression approaches (Kaipio & Karjalainen 1997). The de-
terministic regression approach consists of introducing a linear
combination of time-varying basis functions, such as power func-
tions, Fourier series (e.g. Hall et al. 1983; Eom 1999) and prolate
spheroidal sequences (Grenier 1983; Härmä et al. 2000), instead
of time-invariant coefficients. The stochastic approach uses recur-
sive algorithms, such as the recursive least squares or the Kalman
filter, to estimate the AR coefficients at all times (e.g. Isaksson
et al. 1981; Baziw & Weir-Jones 2002; Naghizadeh & Sacchi 2009).
These methods are well known in the biomedical field (Bohlin 1977;
Oikonomou et al. 2007), and for mechanical systems diagnosis for
example (Conforto & D’Alessio 1999). However, typical AR orders
in their cases are below 10 whereas in seismology, the AR orders
often exceed 15–20 (Leonard & Kennett 1999). Here, eq. (5) is
transformed into a state-space model in order to use the Kalman
filter optimization equations:

Measurement equation :yn = m′
n xn + εn,

Transition equation :xn = T xn−1 + ηn, (6)

where mn is a vector containing the previous p measurements, xn

is the state vector containing the AR coefficients and is assumed

to be a Gauss–Markov process, εn and ηn are the independent and
identically distributed AR and state noise, respectively. The AR
and state noise are normally distributed, random variables with zero
mean and variance σ 2

y and Q, respectively. T is the transition matrix
linking the previous state estimate to the following one.

Finally, the number of coefficients of the AR filter p is deter-
mined in the same way as the ST-AR method. The initial state
x0 of the model is assumed to be Gaussian with mean μ0 and
covariance P0, and independent of both the state and AR noises.
In order to avoid any confusion, the state-space model parameters
� ≡ {

T, σ 2
y , Q, μ0, P0

}
and the coefficients of the AR model will

be referred to as ‘parameters’ and ‘coefficients’, respectively.

2.2.2 Algorithm description

The KS algorithm is adapted from the expectation maximization
KS (EMKS) algorithm described in detail in Ghahramani & Hinton
(1996) and Khan & Dutt (2007). The complex expectation maxi-
mization scheme was found to bring little improvements to the AR
model estimation and was therefore disregarded, keeping only the
KS algorithm. Hereafter, we give the key relationships and indicate
how the algorithm is adapted to seismological data.

The Kalman filter is a recursive process constituted by
two sets of equations, the prediction and updating equations
(Grewal & Andrews 2001). The conditional expectations of the state
x̂n|k and associated error covariance Pn|k given the data sequence
y1:k = [y1, . . . , yk] are defined by

x̂n|k = E (xn| y1:k) ,

Pn|k = E
[(

xn − x̂n|k
) (

xn − x̂n|k
)′ | y1:k

]
, (7)

where E is the expectation operator. These notations, for example,
x̂n|n−1 = E

(
xn| y1:n−1

)
is the conditional expectation of xn given

the time-series y1:n−1 = [y1, ..., yn−1], are used in all the following
equations. Given the state x̂n−1|n−1 and associated error covariance
Pn − 1|n − 1 estimates for the previous sample, the optimal state and
error covariance estimates

[
x̂n|n−1, Pn|n−1

]
for the next time sample

n are obtained via the Kalman filter prediction equations:

x̂n|n−1 = T x̂n−1|n−1,

Pn|n−1 = T Pn−1|n−1T ′ + Q. (8)

These estimates are then updated using the sample at instant n,
incorporated in mn , via the Kalman filter updating equations:

Kn = Pn|n−1m′
n

(
mn Pn|n−1m′

n + σ 2
y

)−1
,

x̂n|n = x̂n|n−1 + Kn

(
yn − mn x̂n|n−1

)
,

Pn|n = (I − Kn mn) Pn|n−1, (9)

where Kn is the optimal Kalman gain. The updated state and er-
ror covariance estimates

[
x̂n|n, Pn|n

]
are then used in eq. (8) as[

x̂n−1|n−1, Pn−1|n−1

]
for the next recursion. The forward recursions

using the complete time-series and eqs 8 and 9 correspond to the
Kalman filter scheme. The transition matrix (T), and the state (Q)
and AR (σ 2

y ) noise covariances are not updated at each recursion of
the Kalman filter. For the first recursion, x̂1|0 = μ0 and P1|0 = P0.

The Kalman filter estimates can be further refined using the
Rauch–Tung–Striebel backward recursions to obtain smoothed es-
timates (Rauch et al. 1965). The backward pass proceeds from the
last sample N to the first sample and use the estimates saved during
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the forward pass. The backward recursions are given by

Jn = Pn|n T ′ P−1
n+1|n,

x̂n|N = x̂n|n + Jn

(
x̂n+1|N − x̂n+1|n

)
,

Pn|N = Pn|n + Jn

(
Pn+1|N − Pn+1|n

)
J ′

n, (10)

where the index n + 1 refers to the estimates for the previous
sample, n refers to the current sample, and N refers to the estimates
updated through the backward pass. In eq. (10),

[
x̂n+1|n, Pn+1|n

]
correspond to the prediction estimates

[
x̂n|n−1, Pn|n−1

]
in eq. (8),

after rearranging the indices for the backward pass, and
[
x̂n|n, Pn|n

]
are the updated estimates. The updated estimates for the last sample
at n = N are used as initial smoothed estimates

[
x̂N |N , PN |N

]
. The

forward and backward recursions together constitute the Kalman
smoother.

In practice, the model parameters need to be initialized before
using the KS recursions. The transition matrix T is set to the identity
matrix, while the other model parameters of � are evaluated using
eq. (1) and the Burg method on a training data set. As there is
only a single realization in the case of microseismic or volcano
monitoring, and because we are interested in phenomena such as
resonance frequencies that have long durations, we divide the time-
series in segments (∼10) of equal length and used them as our
training data set. The initial value for each parameter is then the
mean of the values obtained. These parameters can be used directly
as inputs for the first recursion of the KS to obtain the optimal
estimates of the AR coefficients (option 1, KS1). On the other hand,
all the initial parameters of � can be first refined using the KS on
the training data set, and then used as inputs for the KS applied on
the complete time-series (option 2, KS2, Fig. 3).

Finally, the AR coefficients at all samples n together with the
estimate of the variance of the AR model noise σ̂ 2

y can be used to
compute the time–frequency map in a similar way to eq. (2) using

SK S (n, f ) = σ̂ 2
y∣∣1 − ∑p

l=1 âk
ne−i2πk f/ fs

∣∣2
. (11)

No segmentation is involved in this method, allowing the determi-
nation of the frequency content of the time-series for each sample.
However, the time resolution will not be equal to the sample rate due
to the refinement of the KS estimates using the complete time-series,
avoiding sudden jumps in the values of the AR coefficients.

The signal can then be reconstructed directly from the time-series
using eq. (5) or by using the fact that the AR coefficients correspond
also to the coefficients of an all-pole filter (e.g. Makhoul 1975;
Kay & Marple 1981). To estimate quantitatively the reconstruction
errors, we use the mean square error MSE given by

MSE = 1

N

N∑
n=1

|ŷn − yn |2, (12)

where N is the number of samples, yn is the original signal and ŷn

is the estimated signal.
In the next section, we will apply the two methods based on

AR models as well as the STFT to a synthetic example, a volcano
signal and a continuous recording from a microseismic experiment
to assess their performances.

Figure 3. Flow chart step-by-step of the KS algorithm. The model param-
eters are indicated by �.

3 A P P L I C AT I O N S

3.1 Synthetic signal

To show the performance of each method, we created a synthetic
signal with one harmonic at 5 Hz between 0 and 6 s, one harmonic at
15 Hz from 0 to 2 s that linearly changes from 15 to 20 Hz between 2
and 4 s, and stays at 20 Hz between 4 and 6.35 s, and two frequency
modulated harmonics around 10 and 33 Hz between 6 and 10.2 s and
between 2 and 6.4 s, respectively (Fig. 4). The harmonics amplitudes
are as follows: 0.5 (5 Hz), 0.8 (15 and 20 Hz), 1 (chirp between 15
and 20 Hz), 0.7 (10 Hz) and 0.4 (33 Hz). This synthetic signal is
then corrupted by random noise of variance 0.1 (maximum and
minimum amplitudes of ±1.5). Depending on the part of signal
under consideration, the SNR, as defined by the ratio of the signal-
to-noise amplitudes, is then between 1 and 4. This is a representative
and challenging synthetic signal since it contains multiple constant
and non-stationary resonance frequencies as well as high amplitude
noise.

We determine the AR order using eqs (3) and (4) for orders
between 1 and 100 and window lengths between 0.2 and 10.2 s.
Using eq. (3), the optimal order is 35 whereas using eq. (4), the
optimal order is 10. An AR order of 35 is obviously too high to
estimate the frequency components of the synthetic signal presented
in Fig. 4. This high AR order is due to the AR model trying to match
the distortions introduced by the Fourier transform of the windowed
signal as well as the random noise.

The AR order estimated using eq. (4) is more realistic and used to
compute the time–frequency representation of the synthetic signal
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6 J. B. Tary, R. H. Herrera and M. van der Baan

Figure 4. (a) Synthetic signal corrupted by random noise (variance: 0.1),
(b) noiseless synthetic signal and (c) instantaneous frequencies of the noise-
less signal.

using the ST-AR and KS methods. A comparison of the different
time–frequency maps is given in Fig. 5. Hereafter, we used a win-
dow length for the STFT that corresponds to our best compromise
between the reduction in spectral smearing (frequency resolution),
time resolution and the readability of the different frequency com-
ponents.

The STFT is able to retrieve the constant harmonics at 5 and
15 Hz, the linear change from 15 to 20 Hz, as well as the frequency
modulated harmonic around 10 Hz with reasonable accuracy. Even
the oscillations around the spectral line at 33 Hz are discernible.
Compared with the STFT, the ST-AR is able to map the low fre-
quency lines with somewhat less smearing, even though the fre-
quency modulated component at 33 Hz is not as well recovered.
The background noise of the ST-AR representation is significantly
lower than the one of the STFT.

The initial model parameters for the KS are determined using a
training data set consisting in 100 realizations of the synthetic signal
with high-amplitude random noise (noise variance of 0.2). These
parameters are then introduced into the KS scheme. All frequency
components are detected by the KS2, including the linear change
from 15 to 20 Hz, but the time–frequency map is smoother than those
of the other methods and the frequency modulations are lost. The
KS1 gives a more accurate picture. However, without the smoothing
introduced by the refinement of the AR coefficients estimate on the
training data set by the KS, the KS1 representation exhibits high-
frequency oscillations in frequency and discontinuous frequency
estimates, which are due to the random noise.

The signals reconstructed from the AR coefficients are presented
in Fig. 6. In the case of the KS method, the signal was reconstructed
for every sample using the backward prediction of eq. (5). For the
ST-AR method, the AR coefficients are given for a segment of signal
allowing to use the filter approach to reconstruct the estimated signal
(Makhoul 1975; Kay & Marple 1981).

Figure 5. Time–frequency representations of the synthetic signal given in
Fig. 4, obtained using the STFT with a window of 0.6 s and an overlap of
90 per cent, the ST-AR with an AR order of 10, a window of 1.6 s and an
overlap of 90 per cent, and the KS1 and KS2 methods with an AR order
of 10. The instantaneous frequencies of the noiseless synthetic signals are
superimposed to the time–frequency representations (red lines).
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TVAR model for spectral analysis 7

Figure 6. Reconstruction of the synthetic signal from the AR coefficients
used for the time–frequency representations of Fig. 5. Top row: recon-
struction of synthetic seismogram for the ST-AR method (green) and true
noiseless signal (black). Second row: added random noise (black) and re-
construction error (green) for ST-AR results. Third row: reconstruction of
synthetic seismogram for KS1 (red) and KS2 (blue) methods and true noise-
less signal (black). Last row: added random noise (black) and reconstruction
errors for KS1 (red) and KS2 (blue) results.

The amplitude of the signal reconstruction residuals, including
the reconstruction errors and the random noise, is of the order of the
amplitude of the introduced random noise (Fig. 6). For reference,
the MSE (eq. 12) obtained by only bandpassing the data between
2 and 40 Hz is approximately 0.16. The method with the smallest
MSE is the KS2 method (∼0.09), followed by the ST-AR (∼0.103)
and KS1 (∼0.137) methods. It roughly corresponds to 4–7 per cent
of the maximum amplitude of the signal. Regarding the frequency
variations, the three methods are able to reconstruct all signal com-
ponents (Fig. 6). The STFT and the various AR methods have then
different objectives. The STFT would represent the noisy signal in
Fig. 4(a), while AR methods attempt to retrieve the noiseless signal
shown in Fig. 4(b).

3.2 Long-period volcanic event

In order to show the applicability and the performance of these
methods to other seismic signals, we choose to apply them on LP
volcanic events for their well-known spectral characteristics and
overall importance in volcano hazard management. LP volcanic
events generally start with a high-frequency component, with a
broader spectra, followed by a tail constituted by few harmonics in
a frequency range between 0.5 and 10 Hz (Chouet 1996). Unlike
volcano-tectonic events, which correspond to brittle or tensile fail-
ure in the solid part of the volcano, LP events are related to the
resonant behaviour of fluid-filled cavities or conduits triggered by
pressure variations (Chouet 1996; Benson et al. 2008). LP events
and tremors recorded at volcanoes typically share the same spectral
signature even if they have different durations, possibly indicating
a common source mechanism.

Figure 7. LP volcanic event recorded at Misti volcano, Peru (Lesage et al.
2002). From top to bottom are given the raw data, the time–frequency
representations of this signal obtained using the STFT (window: 1 s, over-
lap: 90 per cent), the ST-AR (AR orders: 78 and 17, window: 2 s, overlap:
90 per cent), the KS1 and KS2 methods (AR order: 17). The two AR orders
obtained using eqs (3) and (4) are 78 and 17, respectively.

The LP volcanic event presented in this section was recorded at
Misti volcano, Peru (Fig. 7). The spectral content of this event has
been analysed by Lesage et al. (2002) with different techniques such
as the STFT, the CWT and AR models. This event is about 80 s long
and constituted by an onset (2.5–10 s) with a broader spectra and
five main harmonics at 2.6, 4.5, 7.3, 9.5 and 12.4 Hz; the spectral
line at 4.5 Hz having the highest amplitude. The different spectral
lines are mostly linear on all time–frequency decompositions. Some
of them are shifting (12.5–11.5 Hz) or are discontinuous (2.6 Hz).

The STFT representation, computed using a window of 1 s with
an overlap of 90 per cent, displays the main features of the event
(broad onset and harmonics). The AR order obtained using eq. (3)
and eq. (4) are 78 and 17, respectively. The AR order obtained using
eq. (4) is consistent with the AR order found by Lesage (2008) (18)
for the same event, using the kurtosis of the deconvolved signal.
We used an AR order of 17 to compare the decomposition results
of KS1 and KS2 methods with the other methods.

Compared with the ST-AR representation with 78 AR coeffi-
cients, the STFT representation is noisier and shows some smearing
around the main frequency lines. The other AR methods computed
with 17 AR coefficients are able to map accurately two of the
harmonics (4.5 and 12.4 Hz). The spectral line in between shifts
progressively from 7.4 to 9.4 Hz, showing that these two lines are
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Figure 8. Reconstruction of a part of the long-period volcanic event with
well-defined harmonics, from 15 to 40 s, from the estimated AR coefficients
used for the time–frequency maps shown in Fig. 7 with an AR order of 17.

too close to be represented by 17 AR coefficients only. The KS2

representation also appears smoother than the one of KS1 due to
the additional refinement of the AR coefficients on the complete
time-series (Fig. 7).

The reconstruction of a part of the LP event with well-expressed
harmonics is shown in Fig. 8. Even with only 17 AR coefficients,
the reconstructed signals are very close to the original one. The
time–frequency decompositions using 17 AR coefficients represent
a large amount of the LP event energy, even if they show a different
behaviour from the STFT. The various outcomes demonstrate the
value of applying different time–frequency transforms to the same
signal to validate its characteristics.

3.3 Microseismic data set

In this section, the three methods, STFT, ST-AR and KS2, are applied
to a microseismic data set having a high-amplitude noise (Fig. 9).
The results of the KS1 method will not be shown here because this
method is efficient for signals with a high SNR, and gave very blurry
images of these data samples.

The present data set is a two-stage experiment recorded by 12
three-components regular geophones at a sampling frequency of
4000 Hz. The geophones were deployed in a vertical well at a depth
similar to the one of the fluid injection. As no theoretical evaluation
of each method is available, we will compare these methods using
typical problems encountered in microseismic experiments analysis.

(i) Time and frequency resolutions.
(ii) Noise sensitivity.
(iii) Ability to track time-varying frequency contents.

Five minutes of the second stage of this microseismic experiment,
showing step-like and smooth variations in spectral lines, was se-
lected to compare the outcomes of each method using the STFT
as a reference. A window length of 4 s with 90 per cent overlap
was used to compute the STFT. The associated time resolution is
of the same order. The time–frequency representation shows four
main resonance frequencies at ∼18, ∼31, ∼35 and ∼52 Hz. Lower
amplitude lines are present at ∼60 Hz and between the lines at ∼31
and ∼35 Hz. Apart for the lines at ∼60 and ∼35 Hz, all the other

Figure 9. STFT, ST-AR and KS2 methods applied to a microseismic data
segment of 5 min (vertical component of the deepest geophone). The data
are downsampled from 4000 to 160 Hz prior to the computation. Black parts
correspond to high amplitudes. STFT and ST-AR methods are computed
using a window of 4 s and an overlap of 90 per cent. For the ST-AR, the two
AR model orders used comes from eq. (3) (p = 101) and eq. (4) (p = 27).
The KS2 is computed using an AR model order of 27.
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TVAR model for spectral analysis 9

Figure 10. Normalized amplitude spectra for the three methods and two
time slices at 50 and 200 s from Fig. 9. The STFT corresponds to the green
line, the ST-AR to the blue (p = 27) and red (p = 101) lines, and the KS2 to
the black line.

spectral lines change at ∼95 s. This change is correlated with an
increase in the slurry injection rate. We observe different changes
depending on the spectral line. The spectral line at ∼52 Hz almost
disappears or shifts to ∼54 Hz, the one at ∼31 Hz drops suddenly to
∼27 Hz, and the one at ∼18 Hz increases smoothly while splitting
in a few lines. The background noise, coming from both the data
and spectral leakage, manifests itself by the blurry aspect of the
time–frequency plot (Fig. 10).

The ST-AR is computed using a window length of 4 s with
90 per cent overlap (Fig. 9). The optimum number of coefficients
is 101 using eq. (3) and 27 using eq. (4). The four main resonance
frequencies are clearly visible on Fig. 9 with both AR model orders.
They follow the same pattern as the one shown by the STFT. How-
ever, regarding the lines of smaller amplitudes, even though the line
at ∼60 Hz is present, the one between the lines at ∼31 and ∼35 Hz
is absent for the AR order of 27. This arises from the design of the
method itself which uses a polynomial of order p to fit the data, at
the expense of the obliteration of very close frequency lines. When
the ST-AR is applied with an AR order of 101, the spectral resolu-
tion of the ST-AR is similar to the one of the STFT and all spectral
lines are present. In both cases, the background noise is generally
lower than the one of the STFT (Figs 9 and 10). The identification
of resonances is then facilitated compared to the STFT.

The KS2 is computed using an AR order of 27 (Fig. 9) because the
computation of the KS2 with an AR order of 101 is computationally
expensive. Similarly to the ST-AR with an AR order of 27, the four
main resonance frequencies as well as the line at ∼60 Hz are present
but not the frequency line between the lines at ∼31 and ∼35 Hz.
The background noise is higher for the KS2 compared to the ST-AR
and the STFT, this method showing a spectrum following the one
of the STFT (Fig. 10). A spectral line that is not identifiable on
the STFT and ST-AR figures, is visible at ∼24 Hz between 0 and
95 s and may be an artifact. The evolution of the AR coefficients is
computed for all samples, leading to a better time resolution than the
other methods. In return, due to the recursive nature of the algorithm

Figure 11. Treatment conditions as well as time–frequency representations
of a complete microseismic data set (horizontal component of the fifth geo-
phone) using STFT and ST-AR methods. Both methods are computed using
a window of 10 s with an overlap of 90 per cent. The ST-AR is computed
with an AR order of 54 (eq. 3). The vertical arrow indicates a signal with
a sharp onset corresponding to a P-wave travelling downward in the casing
of the observation well.

and the size of the arrays involved, the computational cost of this
algorithm is higher than those of the STFT and ST-AR.

In order to test the performance of the STFT and the ST-AR
on a long time-series with low-amplitude spectral lines, we ap-
ply the two methods to the complete microseismic experiment of
∼1.5 hr recorded by the horizontal component of another geophone
(Fig. 11). The same window length (10 s) and overlap (90 per cent)
are used for the two methods. The AR order determined using eq. (3)
is 54. The time–frequency picture given by the STFT is contami-
nated by high-amplitude noise above 40 Hz, while low-amplitude
spectral lines are visible around ∼18, ∼31 and ∼35 Hz. The res-
onances above 40 Hz are hardly identifiable due to the noise. On
the other hand, the low noise level of the ST-AR representation fa-
cilitates the identification of the different resonances. Signals with
sharp onsets, corresponding to vertical lines on time–frequency
maps, are also displayed by the ST-AR (Fig. 11).

4 D I S C U S S I O N

The results of AR methods depends on the procedure to determine
their optimal parameters (Figs 2 and 3). In the case of the AR order
selection using eqs (3) and (4), a comprehensive sampling of the
possible pairs p and wl is necessary to obtain a good estimate of the
optimal parameters. We tested all AR orders from 1 to 100 or 1 to
150 and around 30 windows lengths depending on the length of the
time-series under consideration. For short signals, we recommend
the damped estimate obtained using eq. (4) to prevent biases due to
spectral leakage in the FFT to dominate the inversion results. One
can also use a low AR order for large amount of data when a low-
resolution time–frequency picture is desired, or for time-consuming
algorithms such as the KS. When computing the ST-AR, the window
length is less important than the AR order. A rule of thumb is that
the length of the analysis window can be set to four to six times the
AR order p.

For longer time-series, we recommend eq. (3) to estimate the
number of AR poles. This equation leads to a larger number of
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estimated AR poles but noise sensitivity or spectral line splitting
are minor items due to the large number of samples (e.g. Figs 9
and 11). A larger number of poles can also provide more detailed
pictures and handle more easily the appearance of new resonances.
Overall, even if computationally more consuming than Akaike’s
criteria, AR order selection using eqs (3) and (4) was found to give
reasonable results.

Most of the frequency components for both short and long sig-
nals are recovered by the STFT, the ST-AR and the KS2. Smooth
and sharp variations in frequency are correctly represented as well.
Even though spurious peaks and spectral line splitting are common
for AR spectral estimates (Kay & Marple 1981), the consistency
between AR and Fourier spectral estimations shows that the LP
event harmonics and the resonances in our microseismic data can
be described by an AR model. Despite its shortcomings due to
signal windowing (width of the main lobe and side-lobe leakage),
the STFT gives reasonable results even in the presence of high
amplitude noise. The KS1 method gives reliable results only for
time-series with a high SNR. The higher level of background noise
of the KS2 method is due to the smooth character of its spectral
estimates (Fig. 10). In comparison to the other methods, the ST-AR
shows the lowest level of background noise.

The main inconvenience of the KS2 method is then the smearing
of the spectral lines around their central frequency (Figs 5 and 7).
The resulting loss in frequency resolution is not compensated by a
better time resolution. Nevertheless, for the time–frequency repre-
sentation of time-series of intermediate size, the KS2 is able to detect
the main resonance frequencies and reconstruct the signal with high
fidelity. KS2 and ST-AR methods fail to detect weak spectral lines
when a low AR order is selected. The STFT results show a better
spectral resolution in this case (Fig. 5) owing to the high flexibility
of its algorithm. While the AR order can be increased for the ST-
AR, this is not an option for the KS2 due to its heavy computational
scheme and the large memory requirements involved. Using high
AR orders, the ST-AR is able to map both resonances and broad-
band signals (Fig. 11) even though the primary application of AR
methods stays the modelling of spectral lines. Compared with both
AR methods, the STFT provides robust spectral estimates using a
simple and effective computational scheme.

The time resolution of the ST-AR method is the same as the
STFT but its frequency resolution is not strictly inversely pro-
portional to the window length or time resolution, even though
the accuracy in frequency content estimation is still related to the
length of the analysed window (e.g. Sakai 1979). Other techniques
based on the Fourier transform, such as Welch’s spectral averaging
method (Welch 1967) or the multitaper method (Thomson 1982;
Xiao & Flandrin 2007), can be used to decrease side-lobes spec-
tral leakage even though they still show some spectral smearing.
When long time-series are available, such as for the microseis-
mic experiment, a long window can be employed and the spectral
smearing in STFT representations is limited. The Wigner–Ville dis-
tribution is another method with a high time–frequency resolution.
However, this method is also characterized by cross-terms without
direct physical meaning. These terms can be attenuated at the ex-
pense of a decrease in time–frequency resolution (Cohen 1989).
Some transforms, such as the CWT (Daubechies 1992) and the S-
transform (Stockwell et al. 1996), have a variable time–frequency
resolution depending on the frequency under investigation by keep-
ing a constant ratio central frequency to frequency bandwidth. To
reduce side-lobe leakage and improve localization, the S-transform
uses a Gaussian taper while the CWT uses different wavelet fami-
lies. These transforms are however still prone to spectral smearing,

limited by the Gabor uncertainty principle (Hall 2006; Tary & van
der Baan 2012).

The number of poles p is identical to half the number of resolved
spectral peaks of the AR filter. For short time-series and low AR
orders, the frequency resolution of the AR methods is therefore
limited and comparable to that of the STFT. Other methods, like
empirical mode decomposition (e.g. Flandrin et al. 2004; Han & van
der Baan 2013) or the newly introduced synchrosqueezing transform
(Daubechies et al. 2011) are preferable in this case. For long signals
however, the increased frequency resolution combined with low
noise sensitivity of the ST-AR allow an easy identification of the
different time-varying frequencies (Fig. 11).

Applying different methods to the same time-series can help
validate or invalidate the resulting time–frequency representations.
While the STFT is commonly employed to obtain a first general
picture of the frequency content, AR methods are designed to ex-
tract and reconstruct specific harmonics from time-series and can
achieve a better time–frequency resolution in many circumstances.
The damping of resonances, measured by their quality factor, can
be estimated directly using the AR coefficients (Lesage et al. 2002).
The quality factor Q is a frequency-domain measurement corre-
sponding to the ratio central frequency to frequency bandwidth
at –3 dB. High Q-factors characterize long-lasting harmonics with
sharp spectral peaks. This factor have to be determined for a suitable
range of AR order and for data windows with well-defined harmon-
ics. It contains information on the source of the resonance, such as
the geometry of the resonator and its fluid contents (Kumagai &
Chouet 2000).

5 C O N C LU S I O N

The two AR methods for spectral estimation presented here, namely
the ST-AR and the KS, show consistent results although very dif-
ferent in details. Both methods are able to represent the time-
varying frequency content of time-series, either by applying the
Burg method for AR model estimation on short data segments, or
by estimating recursively the AR coefficients for each new data
sample with the Kalman smoother. The time–frequency map ob-
tained depends mainly on the number of AR coefficients. Here,
the AR order is selected based on the spectral comparison between
the AR and Fourier spectra for a realistic set of parameters (AR
order and signal window length and position). When a high level
of noise is present, the AR order estimation can be damped with a
Gaussian taper. The AR orders obtained using this simple procedure
are suitable for describing and analysing the observed time-series.

The STFT is an effective and reliable method that can be applied
to the time–frequency analysis of resonance frequencies, even in
the presence of noise. The KS method gives accurate estimates of
the main spectral components for time-series of short and interme-
diate size with an intermediate SNR, but its heavy computational
scheme prevents its use for long time-series or with high AR orders.
On the other hand, the ST-AR method combines high spectral reso-
lution as well as low noise sensitivity with a flexible scheme. High
AR orders can be used with this method for long time-series without
introducing spectral line splitting or artificial peaks. AR coefficients
also enable to reconstruct or remove some parts of the signal. Dif-
ferent parts of the signal are enhanced by the different methods
allowing the identification of different frequency components (har-
monics, localized wavelets...) or errors (spectral bias, spectral line
splitting or spurious peaks).
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A better identification of resonance frequencies may help to gain
a better understanding of the underlying physical mechanisms. An
accurate estimation of the time-varying frequency content of mi-
croseismic experiments is of crucial importance because of the
multiple causes of resonance frequencies during the fluid injec-
tion, each potential source being associated with a specific pattern.
Resonance frequencies detection is usually further complicated by
the high-amplitude noise present in microseismic recordings due
to the pumping operations for example. Resonance frequencies, es-
pecially in the low-frequency band, may provide complementary
information to the microseismic event distribution in order to bet-
ter assess the deformation occurring during fracturing experiments,
flow-back experiments, or CO2 injection and storage. Likewise,
a better time–frequency characterization of volcanic signals and
in particular low-frequency tremors may help improve our under-
standing of their physical origin as well as aid in volcano hazard
management.
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