
Motivation

The Comprehensive-Nuclear-Test-Ban-Treaty (CTBT) aim to prohibit any nuclear explosion on Earth. For its realization a nuclear test verification strategy has to be set up, consisting of three pillars:

Monitoring

- International Data Center
- On-Site Inspection (OSI)

OSI aims to be the ultimate tool to clarify wether or not a nuclear test has been carried out in violation of the CTBT. The treaty lists 17 different techniques for nuclear verification including:

Seismic wave interaction with underground cavities

Felix Schneider ¹, Sofi Esterhazy^{1,2}, Ilaria Perugia², Götz Bokelmann¹ ¹) Department of Meteorology and Geophysics (IMGW), University of Vienna ²) Faculty of Mathematics, University of Vienna felix.schneider@univie.ac.at

Model

In order to investigate the potential of different seismic techniques for cavity detection, we investigate the interaction of a seismic wavefield with spherical inclusions.

The simplest description of the problem is an elastic half space that contains an acoustic (gas filled) spherical cavity.

Elastic wave equation in Ω_2 :

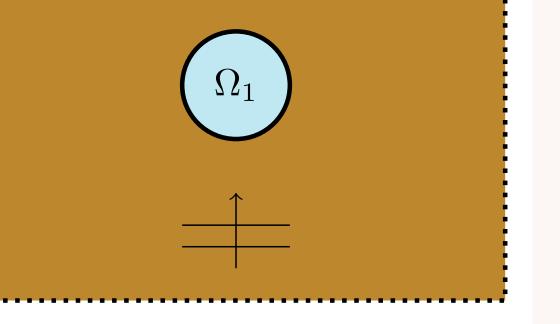
Acoustic wave equation in Ω_1 :

 $\rho \ddot{u}_1 = \lambda \Delta u_1$

$$\rho \underline{\ddot{u}_2} = (\lambda + 2\mu)\nabla(\nabla \cdot \underline{u_2}) - \mu\nabla \times \nabla \times \underline{u_2}$$

Lamé parameter:

$$\lambda = \alpha(v^2 - 2v^2)$$
 $u = \alpha v^2$



- → Gamma radiation monitoring
- → Environmental sampling
- \rightarrow Magnetic and Gravitational
- → Electrical conductivity measurements
- \rightarrow Active and passive seismic surveys
- → Resonance seismometry

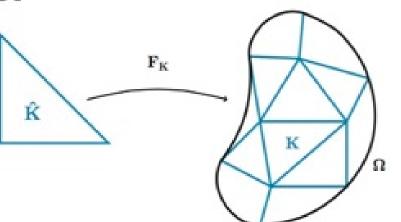
$$\lambda = \rho(v_p - 2v_s) \qquad \mu = \rho v_s$$

Boundary condition at r=R:

 $\underline{\underline{u}}_2 = \underline{\underline{u}}_1$ $\underline{\underline{\sigma}} \underline{\underline{n}} = (\nabla \cdot \underline{\underline{u}}_1) \underline{\underline{n}}$

Analytical approach

Set of equations for incident (U_0) and scattered fields inside (U_1) and $outside(U_2)$ of the cavity


- $\mathbf{U}_{0} = \sum_{l \ge 0} \{ j_{l+1}(\omega \alpha_{2} r) \mathbf{Y}_{l0}^{+} j_{l-1}(\omega \alpha_{2} r) \mathbf{Y}_{l0}^{-} \} \exp\{-i[\pi/2(l+1)]\}$
- $\mathbf{U}_{1} = \sum_{l \ge 0} \{ [a_{l}^{(1)} j_{l+1}(\omega \alpha_{1} r) + [b_{l}^{(1)} j_{l+1}(\omega \beta_{1} r)] \mathbf{Y}_{l0}^{+} \}$

+ $\left[-a_{l}^{(1)}i_{l-1}(\omega\alpha_{1}r) + (l+1)b_{l}^{(1)}i_{l-1}(\omega\beta_{1}r)\right]\mathbf{Y}_{l0}^{-}\right\}\exp\left\{-i\left[\pi/2(l+1)\right]\right\}$ $\mathbf{U}_{2} = \sum_{l\geq0}\left\{a_{l}^{(2)}h_{l+1}(\omega\alpha_{2}r) + lb_{l}^{(2)}h_{l+1}(\omega\beta_{2}r)\right]\mathbf{Y}_{l0}^{+}$

Numerical approach

Higher order finite element method: NGSolve / Netgen (Joachim Schöberl, TU Vienna)

- Discretization of domain of interest $\Omega = \bigcup_i K_i$
- Linear reference mapping:
 - $F_{K_i}:\hat{K}\to K_i$

Approximation via basis functions of higher order

 $p = \sum_k p_k \varphi_k, \quad \varphi_k = F_{K_i}^{-1} \circ N_j$

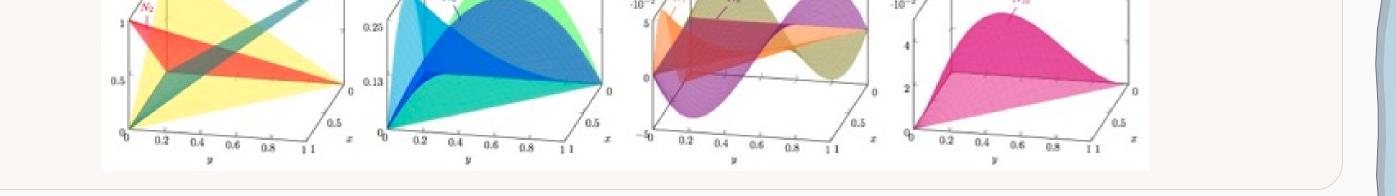
+ $\left[-a_{l}^{(2)}h_{l-1}(\omega\alpha_{2}r) + (l+1)b_{l}^{(2)}h_{l-1}(\omega\beta_{2}r)\right]\mathbf{Y}_{l0}^{-}\right]\exp\left\{-i\left[\pi/2(l+1)\right]\right\}$

TASK: for each l find right coefficients a_l^i and b_l^i to match the boundary conditions at r = R

 \Rightarrow set of linear equations for each l

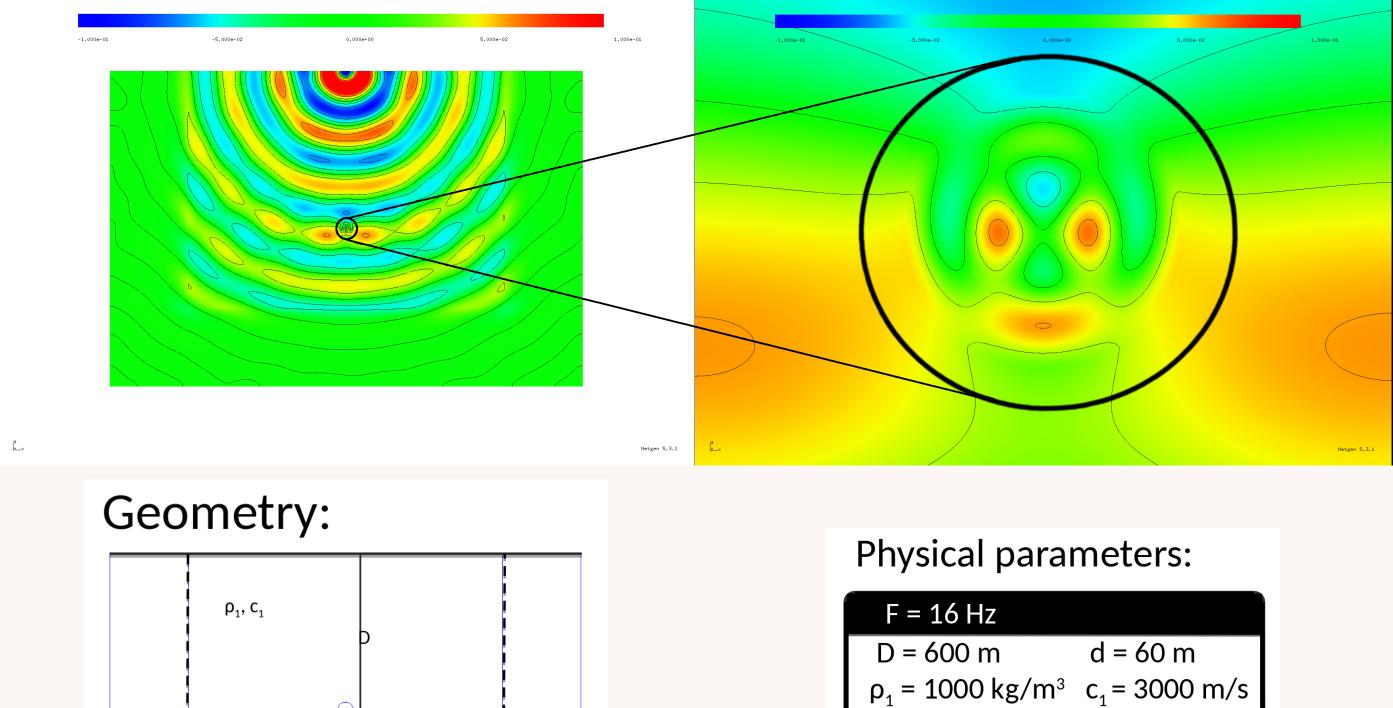
(Valeri Korneev, Geophys. J. Int. (1993))

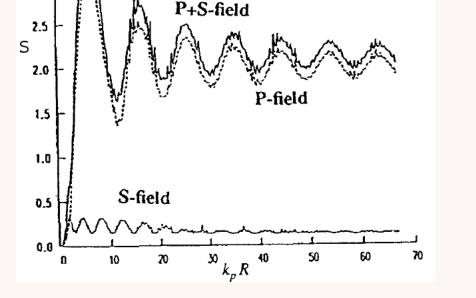
Objectives from analytical approach


Scattering cross sections: Ratio of scattered and incoming energy in dependence of frequency

$$s = \frac{F_{sc}}{F_0}$$

$$F_0 = (\lambda + 2\mu)k\frac{\omega}{2}$$

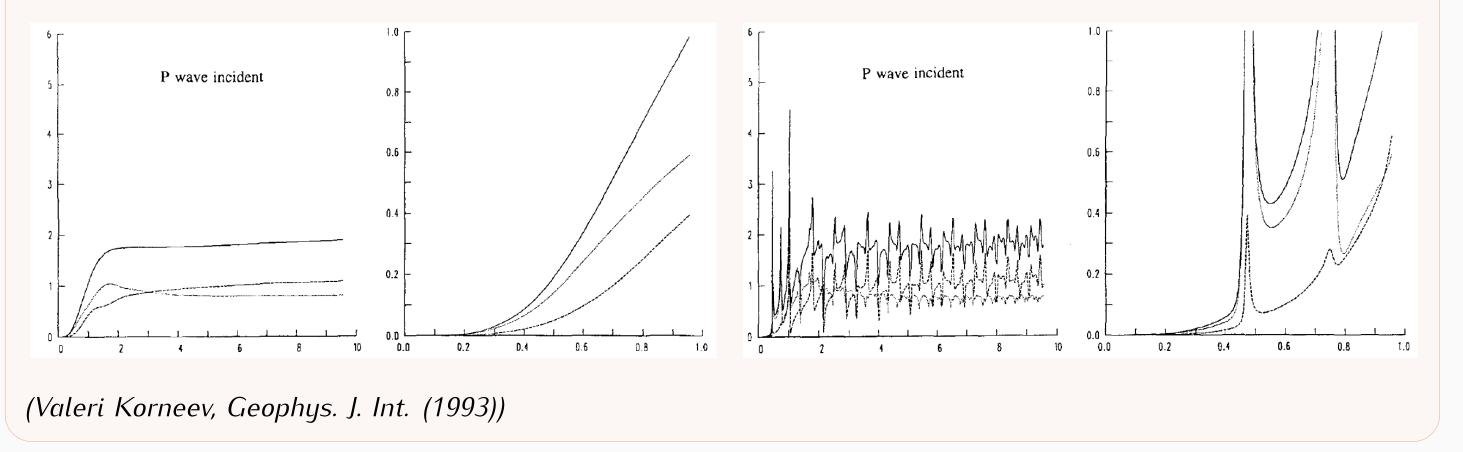

(incident P-wave)


Elastic low velocity inclusionLarge amplitude variation:

Forward modeling

• Total field for incoming point source at the surface above the cavity • here: only acoustic case ($\mu = 0$ inside and outside of the cavity)

interference of waves running through the inclusion and those running around it


• Small amplitude variation: multiple reflection within the cavity

Vacuum inclusion

Acoustic inclusion

 $F_{sc} = \frac{\omega}{2} \operatorname{Im} \int_{Sphere \ r > R} (\mathbf{U}_2) \cdot \mathbf{t} \ ds$

(scattered field)

 $\rho_2 = 1 \, \text{kg}/\text{m}^3$ $c_2 = 300 \text{ m/s}$ ρ_2, c_2 $\Rightarrow k_p R \approx 1$ Perfectly matched layer (PML)

Artificial source

Future target

lay out scientific base for

OSI techniques based on cavity wavefield interaction

- \rightarrow scattering
- \rightarrow resonance emission,...
- Design a method for cavity detection, either by artificial or natural sources

