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Introduction

Ambient noise tomography has rapidly - ' ' ' A To01 20 With a real data set, crustal structure would be obtained by first measuring the surface wave group and/or phase ve-
become a powerful tool with which : 1 1071820 locities. The dispersion curve shows the frequency dependence of the surface wave velocities, and is then inverted for
seismologist throughout the world ; 1 crustal structure at depth. The inversion of these data requires a suitable background model serving as a starting point
study the velocity structure of the crust for the inversion. This model should therefore be sufficiantly similar to the real velocity structure of the study region for
and uppermost mantle using ambient the inversion algorithm to yield a realistic image of the subsurface. It is important to note that the suitability of the
seismic noise instead of earthquake re- | ey background model also is a function of the depth region we are interested in and the frequencies used. We show this

cordings. Typically the noise is recorded | oo 0s by simulating a real world scenario using the synthetic waveforms calculated previously and as if they were real data.
at periods ranging from 4 to 10 sec-
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onds, as the amplitudes are highestin : { rereere commonly used macroseisic band ranging from 4 to 10 seconds.
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) ] and 4 seconds is relatively complex; the dispersion curve sured between 4 and 10 seconds period is much simpler
of the uppermost crust by inverting 1.1 : ) . .
, , , reveals two Airy phases (slope = 0). However, the curve than the high frequencies. The group velocities decrease
high frequency dispersion curves. To : : : : :
o 0o itself is easily measured. with period.
that end we present sensitivities and . . ) )5
synthetic tests in the period range of Period (s) i O
0.1 to 4 seconds, and compare them Analysing the the Green’s functions yields phase velocity dis- \ a0 \ 3 e
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The main conclusions of this study are quite straightforward: (1) in order to seismically investigate the shallow structure
of the crust using surface waves we must use high frequency data. By this we mean periods significantly shorter than
the microseismic band of 4-10 secons. (2) If we manage to measure the dispersion at these short periods, we can reli-
ably recover a realistic model through the inversion. In particular low velocities in the top few hundred meters are well
recovered at 0.1 - 4 seconds.

Moving on, the intriguing questions and challenges that lie ahead of us now are on the one hand what influences ve-
locity heterogeneity in the shallow crust. Can, for example, the range of expected velocities be compared to the lower
crust/upper mantle, and thus be dealt with in the same way using the same methods? Moreover, actually getting that
far could prove to be quite difficult, as the dispersion curve is not easily obtained at high frequencies: measuring group
or phase velocity from a local earthquake is hampered by the high attenuation of the high periods, and ambient noise
recorded will contain lots of man made cultural noise, which is likely not randomly distributed (a requirement for the
cross-correlation to yield the nessecary Green’s functions).
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The sources of ambient noise
recorded by seismometers
are most likely generated at
the surface. Hence we calcu-
late synthetic seismograms

2 7 assuming a vertical force
acting on the free surface, re-
corded on the vertical com-
ponent of seismic station at a
distance of 75 km. The full
waveform is obtained by
model summation.
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