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S U M M A R Y
A new Matched Filtering Algorithm (MFA) is proposed for detecting and analysing microseis-
mic events recorded by downhole monitoring of hydraulic fracturing. This method requires a
set of well-located template (‘parent’) events, which are obtained using conventional microseis-
mic processing and selected on the basis of high signal-to-noise (S/N) ratio and representative
spatial distribution of the recorded microseismicity. Detection and extraction of ‘child’ events
are based on stacked, multichannel cross-correlation of the continuous waveform data, using
the parent events as reference signals. The location of a child event relative to its parent is
determined using an automated process, by rotation of the multicomponent waveforms into
the ray-centred co-ordinates of the parent and maximizing the energy of the stacked ampli-
tude envelope within a search volume around the parent’s hypocentre. After correction for
geometrical spreading and attenuation, the relative magnitude of the child event is obtained
automatically using the ratio of stacked envelope peak with respect to its parent. Since only
a small number of parent events require interactive analysis such as picking P- and S-wave
arrivals, the MFA approach offers the potential for significant reduction in effort for down-
hole microseismic processing. Our algorithm also facilitates the analysis of single-phase child
events, that is, microseismic events for which only one of the S- or P-wave arrivals is evident
due to unfavourable S/N conditions. A real-data example using microseismic monitoring data
from four stages of an open-hole slickwater hydraulic fracture treatment in western Canada
demonstrates that a sparse set of parents (in this case, 4.6 per cent of the originally located
events) yields a significant (more than fourfold increase) in the number of located events
compared with the original catalogue. Moreover, analysis of the new MFA catalogue suggests
that this approach leads to more robust interpretation of the induced microseismicity and novel
insights into dynamic rupture processes based on the average temporal (foreshock–aftershock)
relationship of child events to parents.

Key words: Time-series analysis; Microseismic; Computational seismology; Statistical seis-
mology; North America.

I N T RO D U C T I O N

Hydraulic fracturing (HF) is a process, widely used in unconven-
tional shale and tight-sand oil–gas reservoirs, which consists of
injecting fracturing fluids into a rock formation at a pressure ex-
ceeding the fracture pressure of the rock, thus inducing a network of
fractures through which oil or natural gas can flow into a wellbore
(CCA 2014). During a HF treatment, microseismic events occur due

∗Formerly at University of Calgary.

to deformations associated with fluid and pressure changes in reser-
voir and may be related to activation of pre-existing fractures or the
creation of new fractures (Maxwell & Urbancic 2001; Eaton et al.
2014c). Microseismic monitoring can be achieved by installation
of receivers at the surface or in a wellbore, providing an effective
technology to analyse and map brittle deformation processes asso-
ciated with fracture development (e.g. Rutledge & Phillips 2003;
Warpinski 2009; van der Baan et al. 2013).

In practice, downhole microseismic monitoring is often un-
dertaken using an array of geophones within a single monitor
well (e.g. Eaton et al. 2014a,b; Caffagni et al. 2015). For this
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acquisition geometry, event hypocentres are typically computed by
picking P- and S-wave arrival times, obtaining a least-squares fit
to the picked times based on a site-specific velocity model, and
estimating the azimuth from the receiver to the event by polariza-
tion analysis of the P wave (Oye & Roth 2003). Although some
automation of this process can be achieved, it nevertheless requires
a significant level of user interaction, and is prone to missing events
for which only a single-phase (e.g. the S-wave) is readily discernible.

Various template-based techniques have been developed to detect
and localize small events using matching signals recorded on an ar-
ray (e.g. Got et al. 1994; Roux et al. 2014). In earthquake studies,
template-based approaches have been employed for automated de-
tection of events by cross-correlation (e.g. Van der Elst et al. 2013).
Also known as Matched Filtering Analysis (MFA), this approach
evolved from studies of repeating earthquakes (Nadeau & Johnson
1998; Igarashi et al. 2003; Schaff & Richards 2004), in which high
waveform similarity for different events observed using the same
sensor implies similarity in source radiation patterns and path ef-
fects, and thus similarity in terms of both focal mechanism and
location. These approaches extend the notion of cross-correlation-
based waveform similarity (e.g. van Decar & Crosson 1990; Dodge
et al. 1995; Rowe et al. 2002). The key step that separates MFA from
waveform cross-correlation (WCC) is that WCC determines simi-
larities between triggered (detected) events, whereas a matched filter
correlates a template waveform against a continuous data stream to
detect occurrences of that waveform (e.g. Van Trees 1968).

A number of versatile MFA techniques have been developed in
recent years. Gibbons & Ringdal (2006) showed that an MFA ap-
proach with a master signal immersed in seismic noise could detect
signals approximately 0.7 orders of magnitude lower than trigger-
ing based on ratios of short-term to long-term averages (STA/LTA)
(Trnkoczy 2009). Harris (2006) developed a technique based on
subspace correlation defined by the Principal Component Analysis
of array data, which operates in specific source regions, matching
the fine temporal and spatial structure of the signal. Van der Elst
et al. (2013) developed a matched filtering technique to detect small
earthquakes by cross-correlation of raw continuous waveform data
using reference events, demonstrating enhanced remote triggering
of seismicity caused by fluid injection. Skoumal et al. (2015) iden-
tified 77 earthquakes in Poland Township, Ohio using an optimized
multistation cross-correlation template-matching routine.

Correlation-based MFA techniques have also been applied in
passive-seismic monitoring contexts. At the In Salah carbon capture
and storage project (Algeria) Goertz-Allmann et al. (2014) detected
more than 5000 microseismic events using a single 3-C receiver at
a pilot monitoring well, enabling correlations between clusters of
microseismicity with injection rates and wellhead pressures.

We remark that our method should not be confused with the well-
known MFP technique, classically described as ‘Matched-Field Pro-
cessing’ (see Jensen et al. 1994, for an extended review), widely
developed in underwater acoustics and seismic exploration. The
MFP is a high-precision source-localization technique based on
phase match between data and a computed model-based synthetic
field (the replica vector) generated by a point source at each can-
didate point in a search grid of the medium, which has its phase
and/or amplitude matched (Corciulo et al. 2012). Recently these
techniques have been applied successfully for location of sources
of hydrothermal activity (e.g. Vandemeulebrock et al. 2013).

In this paper, we develop and test a novel MFA method that
is designed for application to downhole microseismic monitoring
of HF using an array of multicomponent sensors. By exploiting
both the beam-forming capabilities and directional sensitivity of the

downhole array, our approach facilitates automated detection and
analysis of microseismic events that might otherwise be difficult to
locate by means of a standard detection procedure.

The paper is organized as follows. First, the basic elements of the
MFA theory are described. Parameter sensitivity and capabilities of
the MFA method are investigated using synthetic tests to evaluate its
effectiveness for suppressing false detections, detection of low S/N
events and reliable location of detected events. Next, the method
is applied to a data set recorded during an HF treatment program
in central Alberta, Canada. In comparison with the original event
catalogue obtained with traditional downhole processing, in this
example the MFA approach yields a more than fourfold increase
in the number of located events. Our analysis also shows that this
approach leads to more robust interpretation of the microseismicity
and new insights into dynamic rupture processes.

M E T H O D

The essence of the MFA approach is a multicomponent cross-
correlation between a long time-series uij(t) with a reference signal
pij(t),

ci j (t) = pi j (t) ⊗ ui j (t) =
+∞∫

−∞

pi j (ς ) ui j (ς + t) dς, (1)

where uij(t) represents continuous raw data for the ith component
and the jth receiver level, and pij(t) is a parent event containing
P- and S-wave arrivals (Eaton & Caffagni 2015). Positive peaks
in the cross-correlation function cij(t) represent short segments of
the continuous data where a high degree of waveform similarity
exists with the reference signal. The onset time of a correlation
peak represents the time lag between the parent and the child event.
Fig. 1 shows an illustrative example of two microseismic events
(a, b) with very similar waveform characteristics, including nearly
identical moveout (change in arrival time across the array) of the
P and S arrivals, in addition to very similar pulse shape and rela-
tive amplitude at each receiver level. These similarities provide a
strong indication that the two events are approximately co-located
and have similar focal mechanisms. We infer that the two events
experienced similar path effects from the source to the receiver
and are also characterized by similar P- and S-wave radiation pat-
terns, which determines the relative amplitude and polarity of the
phase arrivals at each receiver level. Due to these characteristics,
particularly the moveout, we expect that the cross-correlation peak
will exhibit approximately the same lag time for all receiver lev-
els. For this reason, a stacked time-series, s(t) is obtained from the
three-component (3C) cross-correlation,

s (t) =
3∑

i=1

N∑
j=1

ci j (t) , (2)

where N is the number of receiver levels. The correlation-stacking
process represents an implicit beam-forming operation, since it
makes use of the arrival times and polarization information con-
tained in the parent waveform. We do not make use of independent
weighting factors for P- and S- wave, as implemented in the multi-
plet analysis of Kocon & van der Baan (2012). Here, only parent-
child doublets with similar S – P times are considered, and inclusion
of both P and S waves within the cross-correlation time window for
the parent is an important element of our method, as the 3C cross-
correlation approach is formulated such that the relative amplitude
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Figure 1. Two microseismic events (a, b) with similar waveforms, representative of approximately co-located events with similar focal mechanisms. P and S
arrivals are marked for the higher-magnitude event. Only one waveform component is plotted.

Figure 2. Workflow for the MFA method.

and moveout characteristic of both P and S waves contributes to the
computed degree of similarity represented by eq. (2).

The basic workflow for the MFA method is shown in Fig. 2. The
main inputs are: (1) continuous microseismic recordings from a
multicomponent downhole array, and (2) a suite of high signal-to-
noise ratio (S/N) parent events that represent short time windows
(less than 1.0 s) extracted from the continuous data. Magnitudes and
hypocentres of parent events are required prior to further analysis
and can be obtained using existing methods (e.g. Oye & Roth 2003).

Selection and processing of parent events

As with any matched-filtering process, parent events provide tem-
plate waveforms for event detection. In the case of hydraulic-

fracture monitoring, microseismic events typically occur in dis-
tinct spatial and temporal clusters near the injection site for each
treatment stage (Eaton et al. 2014c). For a given event cluster, par-
ent events are selected on the basis of two criteria: S/N ratio, and
distinctive waveform characteristics such as P- and S-wave moveout
and time separation. Under the assumption that background noise is
random, the selection of parent events with high S/N will optimize
the cross-correlation based detection process. The choice of parent
events with distinctive waveform characteristics will tend to reduce
the occurrence of duplicate child events (i.e. those that correlate
with multiple parents). In practice, hypocentre information is often
available for a subset of the highest S/N events. For potential parent
events that are approximately co-located, the event with the highest
S/N is chosen. For the data sets considered here, both parent and
child event waveforms are extracted from the continuous record-
ings within time windows that are less than 1.0 s in duration. Time
windows are centred on the detected arrival times.

The choice of a sufficient set of parent events is critical. As elab-
orated below, parent events can be viewed as basis functions for the
detected microseismicity; consequently, if the set of parent func-
tions used for MFA processing is insufficient or limited, then by
definition they will not span the output space of recorded micro-
seismicity. Although it is not possible, in general, to be certain that
all detectable microseismic events have been extracted from a given
data set, we have developed strategies for optimal selection of parent
events. In the absence of existing processed data, potential events
are obtained from the continuous raw data using an STA/LTA algo-
rithm (Trnkoczy 2009), a well-established approach for downhole
microseismic processing (e.g. Oye & Roth 2003) (see Supporting
Information). If previous processing has been performed, then the
original catalogue of microseismic events, obtained by downhole
standard detection techniques, is considered. It is important to en-
sure that a sufficient number of parent events is obtained for each
treatment stage, excluding potential parent events that are too close
in space or time (∼ 20 m and 0.5 s). In our experience, four parent
events for each treatment stage are generally sufficient; this param-
eter choice reflects an unavoidable trade-off between computation
time and catalogue completeness. For the field data considered here,
our tests indicate that inclusion of more than four parent events for
each cluster yields only a small increase in the number of detections,
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whereas fewer parent events has a significant effect (see Supporting
Information).

Onset times of parent events are automatically re-picked via the
Akaike Information Criterion (AIC) algorithm (Oye & Roth 2003),
as this method is generally more accurate than STA/LTA techniques
(Leonard 2000; Akram 2014). Polarization analysis is then carried
out, followed by rotation of 3-C traces into ray-centred co-ordinates
(Cerveny 2001), thereby separating P, Sfast and Sslow signals into
distinct components. Arrival time picks are refined using the it-
erative cross-correlation approach of De Meersman et al. (2009),
including time-shifts and polarity checking. If previous processing
has not been performed, hypocentres are determined by minimizing
the least-square misfit between observed and calculated times based
on a local velocity model, which should be calibrated using sources
with known locations (e.g. perforation shots). This is combined with
event azimuth information derived from the polarization direction
of P wave to estimate the hypocentre (Oye & Roth 2003; Akram
2014). Finally, moment magnitude Mw is determined by fitting the
observed displacement spectrum with the Brune model (Eaton et al.
2014b).

After each parent event is processed, one of the phase arrivals
(typically the Sfast wave or the P wave) is chosen as a reference
phase for future processing of child events. As elaborated below,
this choice of reference phase is incorporated into the processing
of child events, resulting in a source-localization procedure that is
effective even for single-phase events.

Detection of child events

To account for large variability in the amplitudes of microseismic
events arising from the large range in both hypocentral distance and
seismic moment, we apply an Automatic Gain Control (AGC; e.g.
Yilmaz 2001) procedure that preserves polarization information:

ui j (t) = u0
i j (t)

Ā (t) ∗ � (t, t�)
, (3)

where �(t, t�) is a triangular smoothing operator of unit peak am-
plitude and duration t�, and ∗ denotes the convolution product. In
this expression, in eq. (3), u0

ij is the raw input data, before precondi-
tioning, of the ith component and jth receiver level, and A is defined
by

Ā = 1

3
max

∣∣∣∣∣
3∑

i=1

ui j (t)

∣∣∣∣∣ . (4)

This method has the desirable characteristic that it preserves
event polarization information. For our data set, 3C-AGC provides
comparable results to widely used matched filtering analysis based
on normalized cross-correlation (e.g. Shelly et al. 2007; van der
Elst et al. 2013), due to the varying length and amplitude of parent
waveforms. However the latter approach requires visual inspection
of the detections and is nevertheless prone to detect noisy events,
such as tube waves (see Sections Synthetic Tests and Supporting
Information).

After preconditioning, each parent event is cross-correlated with
the continuous raw data (eq. 2). In practice, a time window (e.g.
several hours before or after the parent event time) can be applied
to speed up this process. Detections (child events) coincide with
local maxima of s(t) (eq. 2) that exceed an empirically determined
multiple (denoted as ξ ) of its standard deviation value. Similar to
STA/LTA (e.g. Jones & van der Baan 2015), there are trade-offs
in the choice of ξ : a value that is too low could result in detecting

child events with multiple parents, whereas a value of ξ that is too
high could result in missed events. In our experience, 6 < ξ < 11
provides a suitable range for the array aperture and noise charac-
teristics of the microseismic recordings that we have analysed (see
the Appendix for further details on the acquisition geometry). This
detection threshold is based on a summed, multicomponent cross-
correlation function and is not a direct measure of the similarity of
individual waveforms; thus, comparison of this empirically derived
range for ξ with Gaussian measures from multiplet-derived analysis
(Kocon & van der Baan 2012) is not meaningful.

Overlapping of child microseismic events may occur, especially
during intervals of high seismicity rate; therefore the code automati-
cally discards detected child events with a minimum time separation
of approximately 0.38∗TC, where TC is the child signal window.

After detection of child events, it is necessary to check for du-
plicate child events and discard them. The procedure is simple;
each detected child event is associated with a parent event, and
in the case of multiple detections of the same child event, only
the parent-child pair with the highest cross-correlation value is
retained.

Location and magnitude of child events

The first step in the location procedure is to transform the three-
component waveforms for each child event into ray-centred co-
ordinates of the corresponding parent. This is achieved by projecting
the three-component recorded waveforms for the child event onto
the polarization directions for the P, Sfast and Sslow arrivals of the
parent event. This step has the effect of approximately isolating the
P, Sfast and Sslow waves of the child event. The previously chosen
reference phase is then selected, denoted by qj(t), where j is the
receiver level.

After isolation of the reference phase, hypocentre locations of
child events are determined by maximizing the stacked (beam-
formed) amplitude value, by searching within a region centred in
the parent hypocentre (Fig. 3a). As part of this process, a moveout
correction (i.e. time shift) is applied to each trace, to account for the
differential arrival times across the receiver array (Fig. 3b). Move-
out corrections are applied using a lookup table that is parametrized
using 2-D cylindrical co-ordinates, defined by radial distance (r)
and depth (z).

The moveout correction is determined based on the picked ar-
rival times for the parent event using a grid-based search approach.
Parent-specific lookup tables are constructed by calculating the ray
theoretical differential time and then adding it to the time picks for
the parent, that is,

tlookup (�r, �z) = tparent + dt (�r, �z)

= tparent + tray (r0 + �r, z0 + �z) − tray (r0, z0) ,

(5)

where �r and �z represent the radial distance and depth co-
ordinates relative to the parent event at r0 and z0. By incorporating
the picked times for the parent events, this approach implicitly ac-
counts for small scale velocity heterogeneity that is not accounted
for in the background velocity model. It also assures that child
events with moveout that is identical to its parent will be co-located
with the parent hypocentre.

In order to estimate the relative azimuth of each child event, a
series of trial rotations is applied in ray-centred co-ordinates (Fig. 4).
Consider a trace q’j(t,�r,�z,�θ ), obtained by applying a moveout
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Figure 3. (a) Geometry of the search region centred on the hypocentre of
a parent event, denoted by a star. The radial distance r is measured from
the nearest geophone, shown by triangles. (b) Schematic illustration of the
moveout correction used to search for optimum relative location of child
events.

correction and rotation to qj(t). The amplitude envelope is then
calculated using:

env
(

q
′
j

)
=

[(
q

′
j

)2
+

(
H

(
q

′
j

)2
)] 1

2

, (6)

where H is the Hilbert transform (Kanasewich 1981). The ampli-
tude envelope is applied in order to mitigate the effects of small
variations in source radiation pattern and path effects, which can
lead to changes in phase and polarity of traces. The stacked ampli-
tude is computed by summing, over all N receivers, the transformed
amplitude-envelope traces:

E (�r,�z, �θ) = max

⎧⎨
⎩

N∑
j=1

env
[
q

′
j (t)

]⎫⎬
⎭ . (7)

Figure 4. Ray centred co-ordinate system, showing sense of rotation applied
during search for child hypocentre location.

Optimal values of �r, �z and �θ are determined by selecting
max(E) using an exhaustive search procedure. These obtained val-
ues are used to determine the child hypocentre with respect to its
parent. Only solutions that are in the interior of the search region
are retained, by omitting maxima that fall on any edge of the pie-
shaped region. Finally, the child hypocentre location is obtained by
transforming the location co-ordinates into the original Cartesian
reference system. Our method for source-location involves a refer-
ence phase rather than multiple phases, namely, P, Sfast, Sslow, since
child locations are reliably obtained relative to the parent hypocen-
tre. Therefore, the integration of the other phases may result in less
accurate child location estimates.

Relative magnitudes for child events can be derived from the
Brune formula for seismic moment. Following Eaton et al. (2014b),
the estimated seismic moment M0 is related to the measured low-
frequency amplitude of the radiated seismic waves, A, by (Aber-
crombie 1995):

M0 = 4πρc3 Ar

R
e− ωr

2cQ , (8)

where ρ is density, c is the wave velocity of the reference phase, r is
the hypocentral distance, ω is the angular frequency, R is the average
radiation pattern for the reference phase and Q is the seismic quality
factor for the reference phase. The moment magnitude Mw is related
to the seismic moment by (Stein & Wysession 2009):

Mw = 2

3
log10 (M0) − 6. (9)

Child moment magnitude, Mchild, is related to the corresponding
parent moment magnitude, Mparent, by

Mchild = Mparent + d M. (10)

The difference dM is obtained using eqs (8) and (9):

d M = 2

3

[
log10

(
Achilddchilde

π f0dchild
cQ

)

−log10

(
Aparentdparente

π f0dparent
cQ

)]
, (11)

where d = (r2 + z2)1/2 is the distance from the nearest receiver to the
hypocentre, for both parent (dparent) and child (dchild) events, f0 is the
dominant frequency of the event, c is the average wave velocity for
the reference phase along the source-receiver path, Q is the quality
factor for the reference phase, and A = max(S(t)) denotes the peak
value of the beam-formed and stacked amplitude envelope function,
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Figure 5. First synthetic test. (a) Left: synthetic data set containing a reference event (highlighted), a strong event with different waveform characteristics and
a weak event that is similar to the reference event. (b) Traces are then aligned, beam-formed with a time shift and cross-correlation computed. After stacking
(bottom trace), the strong event produces a false detection. (c) The same test data set as in panel (a) after the application of AGC function. (d) Cross-correlation
results after AGC. This pre-conditioning process reduces the likelihood of false detections.

calculated using waveforms with no AGC applied. This approach
is analogous to time-domain calculation of magnitude discussed by
Stork et al. (2014). This formulation implicitly accounts for effects
that arise from differential geometrical spreading and attenuation.
From these relationships, it follows that

Mchild = Mparent + 2

3
log10

[
dchild

dparent
e

π f0�d
cQ

Achild

Aparent

]
, (12)

where �d is the difference in distance between the parent and child
event.

The magnitude of child events is obtained from the parent, based
on a relative, rather than absolute, magnitude calculation. Any sys-
tematic error in parent magnitudes (e.g. due to erroneous appli-
cation of instrument response) would therefore also apply to the
child magnitudes, although relative magnitude information remains
unaffected. Furthermore, in the absence of an existing contractor

catalogue, as aforementioned, parent magnitudes must be computed
based on eqs (8) and (9).

S Y N T H E T I C T E S T S

A set of synthetic tests was performed with the objectives of formu-
lating the preconditioning procedure, evaluating the detection capa-
bility of the cross-correlation procedure and validating the search
procedure for source-localization.

The first synthetic test (Fig. 5a) involves three events with typi-
cal moveout characteristics of microseismic field data. The signals
consist of an initial parent event, a second high-amplitude event
with discordant characteristics in terms of moveout, frequency
content and P–S amplitude radiation patterns, and a subsequent
child event that has reduced amplitude but is otherwise a direct
copy of the parent event. For each event, the source waveform is
a Ricker wavelet and the signals were computed using far-field
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Figure 6. Second synthetic test. 3-C section of the first of three reference
events from different treatment stages recorded during the HFME experi-
ment (Eaton et al. 2014a).

elastodynamic Green’s functions for a homogeneous medium (Aki
& Richards 1980) using a tensile-crack opening for the parent/child
event and a double couple shear faulting for the second event. The
two different source types chosen guarantee completely different
characteristics in signals. In the absence of any preconditioning,
the application of correlation and stacking (eqs 1 and 2) results in
high correlation amplitudes for the strong event (Fig. 5b). Despite
its discordant waveform characteristics, this spurious correlation
occurs because the strong event is sufficiently similar to the parent
waveform to generate a high correlation. Fig. 5(c) shows the same
data set as in 5a but traces are AGC scaled, in a 50 samples tri-
angular window length. Fig. 5(d) shows the cross-correlated AGC
scaled traces and at the bottom, the stacked trace. It is clear that
this approach suppresses the false detection (stronger event) while
enhancing the detection of the corrected child event. As shown in
the Supplementary Data, the use of normalized cross-correlation as
suggested by some previous studies (e.g. Shelly et al. 2007; van der
Elst et al. 2013) is less effective than the AGC approach used here
and nevertheless requires visual inspection of the detections.

A second synthetic test was undertaken to evaluate the sensi-
tivity of the method for detection of weak events under realistic
S/N conditions. Three distinct parent events are considered, from
downhole microseismic monitoring of an HF treatment in a tight
sand reservoir, (Eaton et al. 2014a). The 3-C section of the first of
the three parent events is displayed in Fig. 6. We consider continu-
ous waveform data constructed using 15 min of pre-treatment noise
recordings. The three parent events along with ten scaled copies of
each (for a total of 33 events) were added to the background noise.
A random time shift, as well as a random amplitude-scaling factor
between 0.01 and 0.6, were applied to each synthetic child event
prior to summation with the noise record. The 3-C synthetic data
set that was constructed in this manner (Fig. 7, for sensor 12 and
one horizontal component) contains events with S/N as low as 0.1.
Parent events (three numbered peaks) and their copies (unnumbered
peaks) are plotted respectively in the synthetic trace.

Fig. 8 shows the stacked cross-correlation function, s(t) (eq. 2)
obtained using the first reference signal as a parent event. The
thick horizontal line shows the detection threshold corresponding to
ξ = 11 [i.e. eleven times the standard deviation of s(t)]. The method
successfully detected all ten child events (10 unnumbered peaks)

Figure 7. Single horizontal component trace from a 3-C synthetic data set
including the three reference events (numbered peaks) and 10 randomly
scaled and time-shifted weaker copies (unnumbered peaks) of the three
reference events, summed with 15 min pre-treatment noise.

Figure 8. Stacked function s(t) (eq. 2) of the synthetic time-series in Fig. 7.
The synthetic trace is AGC scaled and the three parent events normalized
with respect to the 3-C maximum, then the cross-correlation computed. In
this case, a detection threshold of ξ = 11 returns only the first parent event
and all of the 10 weaker copies (child events), with no false detection.

of the first parent event and the parent itself (numbered peak), as
indicated by peak values of s(t) that exceed the threshold level.
Note the exact correspondence in time between parent events and
copies in Figs 7 and 8. The overall performance of the method
is summarized in Table 1, showing that 29 out of 30 child events
were detected, with no false detections. This test indicates that for

Table 1. Results of the second MFA synthetic test. Parent events are detected
but not included in the number of detections.

Number of Number of False
detections missed events detections

Event 1 10 0 0
Event 2 9 1 0
Event 3 10 0 0
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Figure 9. (a) Velocity model and receiver depth, used for both the third synthetic test and the Garrington data set, obtained by adjusting the initial model with
calibration source points. (b) Example synthetic event with random noise added. Histogram of horizontal and vertical location error for 150 random mislocated
child events, respectively without (c, d) and with (e, f) random noise added to the waveforms. Mean errors and standard deviations are indicated in the figure.

a typical downhole monitoring geometry, with a vertical array of
equispaced geophone aperture (∼ 230 m, Fig. 6) and noise levels
such as those that characterize this example, the MFA procedure is
capable of detecting weak events with S/N << 1.

A third synthetic test was undertaken to evaluate the reliability of
our search-grid procedure for source-localization. Fig. 9(a) shows
the velocity model and receiver depths which are identical to the
real-data example in the next section. The star indicates the depth
of the parent (970 m) used for the synthetic test. Fig. 9(b) shows an
example synthetic event, obtained by ray tracing the direct P and S
waves. A double-couple source is used with horizontal and vertical
nodal planes. Noise is added to this example, taken from the previous
field data. Note that the P wave is barely visible above the noise.
Figs 9(c) and (d) show a histogram of the horizontal and vertical
location error for 150 random child events without noise. The actual
child locations are displaced from the parent location by uniform
random values that are up to ±75 m laterally and vertically from the
parent event, and up to ±25 m out of the plane. The mean horizontal
and vertical error in estimated hypocentre locations is respectively
12.9 and 1.5 m (for the vertical the absolute error is computed),
with a standard deviation of 10.1 and 3.9 m. Location errors exist,

even without any noise, because the approximate traveltimes diverge
from the actual traveltimes with increasing distance. Figs 9(e) and
(f) show a histogram of the horizontal and vertical location error for
the same 150 random child events, with random noise added to the
waveforms. In this case, the mean horizontal and vertical errors are
respectively 15.5 and 1.3 m, with a standard deviation of 11.2 and
3.1 m. The vertical error is much smaller than the horizontal error,
which reflects the fact that the receiver array straddles the source
zone. There is negligible change in the vertical error in the presence
of noise, whereas the horizontal uncertainty increases. Based on this
synthetic test, we conclude that for the receiver geometry, velocity
model and expected noise characteristics of our data, the MFA
algorithm developed in this study provides hypocentre locations
with positional uncertainties on the order of ∼15–20 m for the
horizontal and much smaller for the vertical (∼5–6 m).

A P P L I C AT I O N T O A R E A L DATA S E T

In this section, we show the application of the MFA method to a
field data set. Data were recorded on 2011 August 26 during the first
four stages of a multistage HF treatment of the upper Cretaceous
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Figure 10. Location map of the study area showing Garrington and other
Cardium pools (from Mossop & Shetsen 1994).

Cardium formation within the Garrington field in Alberta (Duhault
2012), Canada (Fig. 10). Commercial processing of this part of the
data set yielded a complex spatial distribution of microseismicity
with 346 microseismic events ranging in magnitude from −4.01 to
−1.29 (Duhault 2012). The HF completion was carried out using an
open hole wellbore assembly, which makes use of fracture ports ac-
tivated using an engineered ball-drop system together with packers
for localization of the injection during each stage (Duhault 2012).
The initial velocity model used to locate the microseismic events
was constructed using well-log data from the vertical monitor well.
The final velocity model (Fig. 9a) was obtained by adjusting the
initial model to ensure that calibration source points, consisting of
sleeve opening events observed with the microseismic array, were
located at their correct positions. The treatment made use of slick-
water fracturing fluid, which represents a low-viscosity solution of
fresh water mixed with sand and minor amounts (<1 per cent) of
chemical agents for friction reduction (CCA 2014).

Four events from each treatment stage were chosen as parent
events, based on criteria of high S/N and avoidance of parent events
in the same parent-child family. The locations and magnitudes of
the parent events and the velocity model are based on the origi-
nal contractor processing of the data. Parameter choices for MFA
processing were guided by the results of the synthetic tests. For
example, we selected ξ = 7 by visual inspection of the child events
and considered trade-offs between the number of detected child
events and the number of duplicate children. AGC triangular length
window was set up at 100 samples (0.05 s).

Fig. 11(a) shows the 3-C trace (h1, h2, z) of a parent event, with
a catalogue magnitude Mw −1.94, projected (b) onto the ray-centre
components (P, Sfast, Sslow), according to the reference phase (S
wave), and one of its child events (c) projected onto the same po-
larization components of the parent event (d). The child magnitude
obtained with the MFA method is −2.46. The similarity in moveout

between these events is consistent with the principle that the two
events are approximately co-located. Fig. 12(a) shows the stacked
amplitude envelope of the S component of the child traces in Fig. 11
for the rotational angles �θ . The stacking procedure (eq. 2) ac-
counts for the traces moveout removing also the mean across the
array, and makes use of the values of �z, �r and �θ that maximize
the E parameter as in eq. (7). Fig. 12(b) shows a look-up radial dis-
tance vs depth plot and the parent location is indicated by a block
cross whereas its child event with a white circle; this child event is
located 52 m from the parent.

Application of the MFA method to this data set yielded 1530
unique child events (Figs 13 and 14). Table 2 shows the performance
of the MFA method in comparison with the number of events found
in the contractor catalogue and by direct inspection of the raw data,
by using a standard STA/LTA algorithm. Details of STA/LTA anal-
ysis, number of detections, compared to MFA and contractor cata-
logue are presented in the Supporting Information section. Visual
inspection of all the events detected with the STA/LTA algorithm
indicated that this method is too sensitive to noise bursts and tube
waves. In addition, the majority of detections using STA/LTA were
not locatable using conventional methods since only one phase (typ-
ically the S wave) was discernible above the noise (i.e. single-arrival
events). The number of the events detected with the MFA method
refers to child events after removal of duplicates (1822), while 1530
are events for that we can ‘trust’ the location. It is important to high-
light that the MFA method enables to locate all the detected events,
opposite to a standard STA/LTA (see Supporting Information).

The temporal relationship of microseismic activity to the treat-
ment program can be discerned by comparing seismicity rate with
the pump curves, which consist of surface treatment pressure, in-
jection rate and proppant concentration (Fig. 13). The beginning
and end of each treatment stage is marked by a pressure buildup
and drop-off, respectively. Within a given stage the injection rate
is maintained at a relatively constant level whilst the proppant con-
centration is progressively increased. While the MFA results and
the original catalogue exhibit generally similar trends, it is notable
that the rate of seismicity inferred using the MFA method is more
than 4 times greater than obtained during the original commercial
processing (Fig. 13, lower panel). Four local peaks in seismicity rate
are evident: near the beginning of stage 1 roughly synchronous with
the peak (breakdown) pressure, near the end of stages 2 and 3 at
approximately the same time as the proppant concentration peaks,
and in the next stage 4. Rather than following the common practice
of attributing microseismic events to each stage based on the treat-
ment data, the rise and fall of seismicity rate is used as the basis
for subdividing the microseismic events into four distinct temporal
clusters, each separated by a local minimum (Fig. 13, lower panel).

Fig. 14(b) shows the spatial distribution of microseismicity in
map view, broken down by temporal clusters that are delineated in
Fig. 13, lower panel. Each event cluster has distinct characteristics,
probably indicative of reservoir heterogeneity along the treatment
wellbore (Eaton et al. 2014c). The first cluster (indicated by red
dots) contains 137 events and 302 events, respectively, in the orig-
inal (Fig. 14a) and MFA (Fig. 14b) catalogues. To a first approxi-
mation, these events define an NE trending feature that is roughly
parallel to the regional direction of the maximum horizontal stress
axis (Heidbach et al. 2010). The second cluster (indicated by blue
dots) contains 58 and 358 events, respectively, in the original and
MFA catalogues. The distribution of events in the original catalogue
is scattered and sparse, but the MFA results exhibit a relatively tight
distribution of events aligned at N60◦E, slightly oblique to the max-
imum horizontal stress axis. Activity commenced along this oblique
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Figure 11. Three-component record sections for an M −1.94 parent [panels (a) and (b)] and M −2.46 child event [panels (c) and (d)]. In panels (a) and (c),
traces are plotted using the original geophone orientations without rotation (h1 = red, h2 = green, z = blue). In panels (b) and (d), traces are projected onto the
polarizations of the parent event (P = blue, S1 = red, S2 = green). This projection results in approximate separation of P and S1 wavefields. For this example,
the S1 phase was used to estimate the hypocentre location of the child event.

trend during the development of the first cluster. The third cluster
(indicated by green dots) contains 119 and 691 events, respectively,
in the original and MFA catalogues with a complex spatial distribu-
tion. Finally, the fourth cluster (indicated by magenta dots) contains
34 and 179 events, respectively, in the original and MFA catalogues.
No clear trend is evident in the original catalogue, but comparison
of the MFA data in Fig. 14 with the temporal evolution in Fig. 13
shows that a pressure buildup after stage 4 resulted in reactivation
of a distal region of the distribution from cluster 3.

D I S C U S S I O N

Our method for locating child events is based on amplitude
envelope-stacking across the sensor array. As discussed by Gharti
et al. (2010), averaging of trace envelopes reduces the influence of
noisy traces/receivers. Our MFA approach exhibits some similari-
ties also with beam-forming techniques used to locate long-period
volcanic signals (e.g. Almendros et al. 2002) and amplitude-based

techniques used to locate non-volcanic tremor (e.g. Wech & Crea-
ger 2008). An important distinction of our method is the choice for
each parent event of a reference phase, which enables the detection
and analysis of child events with a single-phase arrival, whereas
the mentioned methods in volcanic studies necessarily assume the
same seismic phase dominates the wavefield across the entire array.
Our procedure can be compared to the method of pattern recog-
nition of earthquake detection proposed by Joswig (1990), which
is a standard noise adaptation technique. In the latter, one would
select the template event and treat child events such as noise floor.
However our method works in the opposite way, namely, it extracts
child events by virtue of waveform similarity between selected par-
ent events and raw data.

The distribution of microseismic events in Fig. 14 shows that all
of the clusters, especially for the MFA results, exhibit a clear asym-
metry towards the NE with apparent bias in the direction of the
monitor well (Fig. 14). This asymmetry may largely reflect velocity
heterogeneity (Eisner et al. 2009) or acquisition bias towards the
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Figure 12. (a) Stacked envelope amplitude versus rotation angles �θ for
the child event in Fig. 11(c). Look-up radial distance versus depth plot (b);
the white circle shows the child location at the maximum stacked value, and
the black cross shows the parent. The child is located 52 m from the parent.

monitor well (Rutledge & Phillips 2003; Fischer et al. 2008). On the
other hand, results of microseismic monitoring from this area indi-
cate that hydraulic fracture growth appears to occur preferentially
towards the NE (updip) irrespective of the location of the monitor
well (Duhault 2012). If asymmetric fracture growth can be validated
by additional work, it may be indicative of the geomechanical in-
fluence of the driving role of strong lateral stress gradients (Fischer
et al. 2008; Dahm et al. 2010).

Fig. 15(a) shows a histogram of the time difference between child
events and the corresponding parent events. In this figure the oc-
currence of all the child events detected for all the 16 parent events,
are considered. This type of diagram is enabled by the association
between parent and child events and thus cannot be produced from
conventional processing of microseismic data. A negative time dif-
ference implies that the child event preceded the parent, and vice
versa. In addition to the main peak in the histogram, an interest-
ing feature in this diagram is secondary peaks that separated by
35–38 min in time, both before and after the primary histogram
peak. These secondary peaks reflect the underlying cyclic rate of
seismicity that is evident in Fig. 13, and represent child events that
occur during a different stage than the parent. Such events may oc-
cur during an earlier stage, such as events during cluster 1 that are
west of the main distribution and that follow an oblique trend that

becomes fully active during cluster 2, or after a stage is completed,
such as cluster 4 events that appear to reactivate a distal part of
the cluster 3 seismicity distribution. The occurrence of these early
and late child events, located far from the injection point or locus
of hydraulic fracture growth, suggest that stress activation of mi-
croseismicity may be occurring in addition to commonly assumed
fluid activation (Maxwell & Urbancic 2001; Rutledge et al. 2004;
Shapiro & Dinske 2009).

Fig. 15(b) shows an enlargement of the main peak of the his-
togram from Fig. 15(a), which covers parent-child temporal rela-
tionship within a single treatment stage. The shape of this histogram
before the occurrence of the parent event is strikingly different from
the shape afterwards. Before the occurrence of a parent event, the
histogram shape is suggestive of a uniform probability of precur-
sory child events over a time period of about 10 min. For greater
times in advance of parent events the probability of occurrence is
significantly reduced. On the other hand, we observe a spike in the
occurrence of child events immediately following the parent, with
a subsequent diminishing occurrence rate. For any given parent-
child event set in this diagram, the magnitude of the parent event is
greater than any of the child events. Thus, the diminishing occur-
rence rate is reminiscent of an Omori distribution. Taken together,
this distribution is strongly suggestive of a dynamic process that
consists of a ∼10-min precursory sequence of microseismicity that
is terminated by a larger magnitude (parent) event and followed by
a typical aftershock decay sequence. The resolution of this type of
dynamic behaviour of microseismicity during HF stimulation of a
reservoir holds promise for further studies, with potential to pro-
vide new insights on rupture dynamics that could be used to refine
models of crack propagation.

Figs 15(c) and (d), similarly to Figs 15(a) and (b), show a
test conducted on the sensitivity of the parent-child temporal re-
lationship. All the child events obtained by four randomly selected
parent events, are removed. This test confirms the previously ob-
tained trends, providing greater confidence in the robustness of the
method. The sensitivity test, as well as, can give some insights to the
selection of parent events in the MFA method and to what extent it
could span the detected microseismicity in the stage.

The MFA approach developed here, perhaps used in combination
with other techniques for estimating the Stimulated Reservoir Vol-
ume (SRV) holds promise for interpretation of induced seismicity
processes in an oil–gas reservoir. Improved location obtained with
our method may help to ‘illuminate’ fracture networks and/or buried
faults, with application to mitigation strategies.

C O N C LU S I O N S

We have designed an MFA that is tailored for application to down-
hole microseismic monitoring using an array of multicomponent
sensors within a single monitor well. Our procedure is based on
cross-correlation between reference events (parent) and continuous
raw data, generating additional (child) events. Amplitude normal-
ization of the data is required as a preconditioning step to enable
detection of weak child events and reduce false detections. A new
technique based on the projection of child events onto ray-centred
co-ordinates of the corresponding parent facilitates estimation of
relative magnitudes and locations, including single-phase events.
Hypocentre locations of child events are obtained by maximizing
the amplitude of stacked envelope functions within a 3-D annular
region centred on the parent hypocentre.
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Figure 13. Comparison between pump curves (upper panel) with seismicity rate (lower panel) determined using both the MFA approach (blue) and the original
catalogue (red). The rise and fall of seismicity rate is used as the basis for subdividing the microseismic events into four distinct temporal clusters, each
separated by a local minimum.

Figure 14. Map view of event locations from the original catalogue (a) and the MFA results (b). The monitor well is indicated by the black circle with a cross.
The approximate injection point is indicated by a magenta circle with a cross inside. The black line shows the trajectory of the lateral treatment well. Coloured
dots indicate clusters 1 (red), 2 (blue), 3 (green) and 4 (magenta). Grey dots show locations of events from previous clusters.

Application of our MFA procedure to four stages from an HA
treatment in western Canada yielded promising results, with an
approximate 4.4-fold increase in the number of located events rel-
ative to recent commercial processing. On the basis of comparison
with treatment curves, we divided the microseismicity into temporal

clusters. The spatio-temporal evolution of clusters of seismicity can
be more readily interpreted using MFA results. Finally, the MFA
approach enables analysis of the distribution of time difference
between child and parent events. The inferred distribution shows
evidence for far-field (stress related?) triggering of microseismicity
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Table 2. Summary of detections using an STA/LTA algorithm, the MFA and
the original catalogue (see Supporting Information for details on STA/LTA
analysis). Noisy events refer to noise bursts and tube waves. The STA/LTA
revealed to be too sensitive to noisy events.

Catalogues Number of detection Percentage noisy events

STA/LTA 2674 >60 per cent
MFA 1822 0 per cent
Contractor 346 0 per cent

during previous and later stages, as well as dynamic behaviour of
microseismicity characterized by a ∼10 min precursory sequence
that is terminated by a larger event and followed by an Omori-like
aftershock decay trend.

On the Cardium data set, the MFA method extends considerably
the potential of events detection in comparison to standard STA/LTA

techniques, which are too sensitive to noise bursts and tube
waves.

The MFA method may hold promise in combination with tech-
niques to estimate the SRV and interpretation of deformation pro-
cesses in induced seismicity.
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Figure 15. (a) Histogram of relative time of child events with respect to their corresponding parent events. (b) Enlargement of the histogram in panel (a),
showing the occurrence of child events during the same treatment stage as the parent event. Distribution suggests that a precursory sequence of child events,
lasting ∼10 min, precedes most parent events. After the parent event, which has the highest magnitude in each sequence, the distribution resembles an Omori
decay suggesting that child events that occur after the parent behave as aftershocks. Panels (c) and (d), similarly to panels (a) and (b), are constructed removing
four selected randomly parent events, confirming the previously obtained trends.
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S U P P O RT I N G I N F O R M AT I O N

Additional Supporting Information may be found in the online ver-
sion of this paper:

Figure S1. Potential detection of AGC (a) and NCC (b). Detection
threshold is fixed at 2.2 times the standard deviation of the stacked
trace. In this example, using AGC results in two good detections
and no false positives; using NCC results in two good detections
and one false positive.
Figure S2. Stacked cross-correlation function obtained with the
two approaches: (a) AGC, (b) NCC, using the first parent event
as a detection template. Detection threshold is fixed at 7 times the
standard deviation of each stacked trace.
Figure S3. Representative example of a tube wave (noisy event)
detected by NCC at 13:31:42. This approach is prone to detect
noisy events.

Figure S4. Representative example of a tube wave (noisy event)
detected by the STA/LTA algorithm at 12:45:23.
Figure S5. Representative example of a potential event detected by
the STA/LTA algorithm at 14:32:52.
Figure S6. Representative example of a good event detected by the
STA/LTA algorithm at 13:19:13.
Table S1. Comparison among the detection obtained using AGC
and NCC. Noisy events were determined by visual inspection.
Table S2. STA/LTA parameters.
Table S3. Detections using STA/LTA and MFA compared with the
Contractor event catalogue for the same time period.
Table S4. Child detection obtained by varying the number of par-
ent events for stage, NP. ND and NC refer to the number of child
events obtained with the MFA method, prior to and after removal of
duplicates, respectively.
(http://gji.oxfordjournals.org/lookup/suppl/doi:10.1093/gji/
ggw168/-/DC1).

Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the paper.

A P P E N D I X : A C Q U I S I T I O N G E O M E T RY
F O R T H E S Y N T H E T I C A N D R E A L
E X A M P L E S

Data used in this work for the second of the two synthetic tests
presented are extracted from the full data set recorded during the
Hoadley Flowback Microseismic Experiment (HFME). This exper-
iment and all the technical details are described by Eaton et al.
(2014a); the vertical downhole acquisition geometry consisted of
a vertical monitoring well where a 12 sensor array of triaxial geo-
phones (corner frequency 15 Hz) was installed. Inter-pod spacing
varied from 30.5 m for the top four units to 15.25 m for the bottom
eight, representing a total array aperture of 229 m.

Data used for the application example of the MFA method shown
are taken from the microseismic experiment discussed in detail by
Duhault (2012). The monitoring system, similar to HFME, was
composed of 12 3-C geophones straddling the reservoir target with
a sensor spacing of 30 m for a total array aperture of 330 m.
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