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SUMMARY

P-wave polarization constrains local anisotropy in the vicinity of the receivers. Using
three-component and array data from the regional GERESS array in south-eastern
Germany, we measure polarization a and propagation vectors s for P phases of 120
events. Angular deviations a-s between these normalized vectors often approach
10°, rendering them easily measurable. The effect of anisotropy can be distinguished
from remote effects, since all remote effects, such as source mislocation, distant
lateral heterogeneity or distant anisotropy, affect polarization and propagation
vectors simultaneously. Averaging removes sensitivity to near-receiver hetero-
geneity, and local anisotropy is left as the sole cause of the effects in a-s. This
method hence gives local effective anisotropy in the near-receiver crust averaging
over a depth interval of a wavelength (=6 km). We resolve strike and dip of the
symmetry plane and also two dimensionless numbers n and 7 which give constraints
on four of the elastic parameters. The optimum model (variance reduction 44 per
cent) has symmetry plane orientation of strike 113° and dip 49° to the north, which
corresponds closely to the consistently observed gneiss foliation direction in the area
(120°, 50°-60°). Comparing % and 7 with predictions from different physical models
we find that the data are fit by a gneiss model assuming that the anisotropy is
dominated by the mica, if 3-8 per cent of the mica are well aligned. This suggests
that anisotropy in the region studied is dominated by the effect of local foliation
rather than the regional stress field.
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1 INTRODUCTION

In a pioneering study of anisotropy in the Earth, Hess
(1964) showed that azimuthal traveltime delays of oceanic
P, can be explained by aligned olivine crystals in the oceanic
upper mantle. For such a phase, which travels subhorizon-
tally on most of its path, Backus (1965) showed that
azimuthal traveltime variation is characterized by a rather
simple trigonometric expression, given that anisotropy is
weak. Fitting of such trigonometric terms has subsequently
been used for teleseismic P waves, e.g. in Dziewonski &
Anderson (1983). Interpretation of such data, however, is
complicated by the fact that lateral heterogeneity can also
cause azimuthal variation. This trade-off is often difficult to
resolve from traveltime data alone. The second type of
‘classical’ anisotropy study is shear-wave splitting (Ando,
Ishikawa & Yamazaki 1983; Silver & Chan 1991), a
-technique which uses the strong effect of anisotropy on
waveforms of shear waves due to different speeds of the two

orthogonally polarized shear waves. The constraint on
anisotropy is not unlike that of traveltimes. Both give
integral constraints only, namely on bulk anisotropy along
the wave path. Hence, for both methods a trade-off exists
between size of anisotropy and extent of anisotropic path.
More importantly, an anisotropic region is difficult to
localize using these data. For example, mantle anisotropy
can be inferred from shear-wave splitting data only if the
observed effects are too large to be explained by crustal
anisotropy alone. This is somewhat unsatisfying, and
methods for independent determination of anisotropy in the
crust under the receivers should be sought. This paper, in
fact, demonstrates that (beside active experiments) an
entirely independent constraint on near-receiver anisotropy
is possible, which follows from analysis of three-component
array data.

Anisotropy studies using traveltimes and shear-wave
splitting can be performed with single-station data, in the
latter case requiring a three-component instrument. For the
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present study of P-wave phases, we use array and
three-component data from the GERESS array. These array
data allow determination of the propagation vector s =k/w
of plane waves crossing the array. While this particular
feature of beam-forming is well appreciated for signal
enhancement, event detection and localization (Beauchamp
1975), this particular strength has apparently not been used
in anisotropy studies so far.

The propagation vector, given by s = Vt, may be specified
by azimuth 6, and horizontal slowness p =VsZ+s2 or
alternatively by incidence angle ¢, =sin"'(pv) with the
local velocity v. On the other hand, three-component
stations allow determination of the polarization vector a,
which gives the dominant direction of linear particle motion.
a can be specified by azimuth 6, and incidence angle ¢,. In
the following we restrict our attention to normalized s and a,
namely to azimuth and incidence angles. This effectively
ignores that the array also gives estimates of the apparent
velocity. Neither of the two azimuth estimates 6, and 6,
necessarily corresponds to the azimuth of the receiver—
source great circle, since heterogeneity, anisotropy and
other effects may cause deviations. The same is true for the
incidence angles. For a known source location we get
predictions (6, ¢,) for a reference earth model. Comparing
(6,, ¢,) and (6,, ¢,) with the predictions gives rise to
so-called mislocation diagrams.

For the purpose of event localization the two data types
and correspondingly their mislocation patterns are typically
treated the same, where the azimuth is used for localization
purposes, while the incidence angle serves for identification
of the phase type for regional events and of epicentral
distance in the case of teleseismic events. Interestingly,
source location procedures have so far disregarded that
these two observed quantities, namely propagation and
polarization vectors, are principally different. While they
coincide in an isotropic earth, elastic anisotropy would affect
propagation and polarization vectors differently. For event
localization, this means that there is a systematic bias
between propagation and polarization vectors, which should
be removed by taking local anisotropy into account. This
systematic bias, however, is the prime quantity of interest in
this study, since it offers us a new constraint on anisotropy in
the vicinity of the receivers (in fact exclusively there). In this
study we use only polarization and propagation vectors.
Traveltime and amplitude information is not used, since this
might obscure the near-receiver crustal anisotropy with
information gathered somewhere along the ray paths.

2 OBSERVATIONS

2.1 GERESS array

The GERman Experimental Seismic System GERESS
(Harjes 1990), shown in Fig. 1, is a regional seismological
array with an aperture of about 4km consisting of 25
stations with 1Hz vertical short-period instruments (Geo-
tech GS-13) sampled at 40Hz, with four of them also
equipped with horizontal components (A2, D1,D4,D7;
triangles). Additional three-component instruments at the
C2 location are sampled at 120 Hz (Geotech GS-13) and
10Hz (Geotech BB-13). For further descriptions of

installation criteria, performance and operation see Harjes
(1990) and Harjes et al. (1983). The array is located in
eastern Bavaria, Germany, in a hilly region on crystalline
outcrop of the Bohemian massive, with topographic
variation of about 200m across the array. A major
advantage of data from the GERESS array is that there are
no sediments under the stations, greatly improving the
quality, particularly of the polarization data. Otherwise P-§'
conversions at the crust-sediment boundary might perhaps
disturb polarizations substantially.

2.2 Events

This study uses a set of 95 events recorded at GERESS
array stations in the time interval between 1990 May and
1993 January (Table 1), which comprise the whole range
from regional to teleseismic distance. The emphasis in this
study is on first-arriving phases. The only later arriving
phase is PcP, in three cases. The chosen events in Table 1
are part of a larger set of events. For several events either
the polarization or propagation vector had to be discarded,
particularly early on in the experiment. In general, events
were discarded if data from less than three three-component
stations or nine array stations were available. Out of 112
events with acceptable polarization data, 81 had data for all
six three-component instruments present. Out of 108 events
with acceptable propagation data, 88 had data from at least
20 array stations.

2.3 Determination of polarization directions

Now we discuss procedures of extracting backazimuth and
incidence angle information from three-component and
array data. For three-component data uw’=(u;)’ with
components j =1, 2, 3, the covariance matrix at zero-lag is
computed as

1Y,
S =y 2w, M

where N is the number of samples in the time window.
Obviously, S is symmetrical, so that its eigenvalues A’ are
real and non-negative. We choose a set of three
orthonormal eigenvectors a’. A’a’ (no summation) then give
the axis of the polarization ellipsoid (see, for example,
Kanasewich 1981). If the particle motion is linearly
polarized, then A%>=A>=0. For elliptical particle motion
(within a polarization plane), we have A*=0. In general,
however, the particle motion is ellipsoidal due to the
presence of noise. If we take components (1,2,3) as
(vertical up, north, east), the incidence angle is ¢, =
cos™ ! |u}| and the backazimuth is

1
~1[43
tan 1( 1)
a
1

. .
n'+tan_1( f) for aj =0
a;

for al <0

A simple check of the quality of the measurement is given
by the rectilinearity
A+ A3

1 ,
2A!
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Figure 1. (a) Geographic location of the GERESS array in south-eastern Germany. Borders with Austria and the Czech Republic are shown
by thick lines. (b) Array locations in Gauss—Kriiger coordinates. Data from 25 vertical-component short-period instruments and
three-component instruments (triangles and rectangles) are used in this paper. The topographic variation across the array is about 200 m.
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Table 1. Events used in this study.
(Location and time from PDE Monthly Bulletin, if not stated
otherwise.)

Year, Day, Hour, Min, Sec. Latitude Longitude Depth Phase

1990 123 01 03 38
1990 240 20 21 22
1990 246 10 48 33
1990 253 12 17 36
1990 258 23 07 43
1990 285 17 30 00
1990 297 15 04 14
1990 318 18 11 58
1990 325 16 59 58
1990 331 04 37 58
1990 331 04 51 36
1990 347 00 24 26
1990 348 03 21 27
1990 350 15 45 41
1990 355 13 12 53
1991 038 07 12 48
1991 042 15 43 44
1991 059 15 29 42
1991 074 03 24 09
1991 078 02 51 26
1991 094 19 00 00
1991 100 01 08 40
1991 111 08 51 56
1991 116 22 35 11
1991 119 09 12 48
1991 119 18 30 42
1991 120 03 40 36
1991 12210 15 17
1991 123 23 41 02
1991 136 02 06 17
1991 138 17 14 59
1991 143 19 42 56
1991 149 18 59 58
1991 149 20 24 40
1991 154 10 22 40
1991 165 17 59 58
1991 166 00 59 20
1991 185 06 26 32
1991 191 23 57 20
1991 196 18 09 58
1991 200 01 19 52
1991 200 01 27 32
1991 222 05 23 48
1991 252 18 36 52
1991 257 19 00 00
1991 279 0146 48
1991 281 03 31 16
1991 291 19 12 00
1991 301 00 21 32
1991 303 16 24 21
1991 304 09 31 17
1991 324 01 54 17
1991 325 02 16 32
1991 326 07 40 01
1991 327 01 06 31
1991 332 17 19 56
1991 336 08 49 40
1991 336 09 04 43
1991 337 16 58 23
1991 338 13 31 31
- 1991 351 06 38 17
1991 353 03 12 22
1991 353 18 55 17

43.315
36.267
45.915
70.770
64.655
37.250
73.360
-22.258
-21.9
43.853
43.895
37.3

© 39.347

41.361
-18.891
47.590
44.871
51.690
34.343
39.260
37.296
37.359
37.972
43.446
42.453
42.503
51.690
47.929
42.647
52.309
-21.832
51.416
-22.256
45.016
40.048
-21.944
42.461
42.387

51.424

-21.877
45.344
45.312
51.428
51.414
37.226
41.096
45.587
37.063
44.265
45.029
45.011
46.778
45.491
45.019
51.428
36.924
45.498
45.437
44.994
44.978
47.393
45.907
28.102

19.890
27.218
15.873
-13.803
-17.617
-116.490
54.670
-138.805
-138.980
16.633
16.641
15.438
15.355
43.715
-177.971
15.503
6.704
16.360
26.389
20.429
-116.313
36.221
19.952
16.244
43.673
43.899
16.206
16.209
43.263
7.649
-139.014
15.850
-138.794
8.213
42.859
-138.988
44.009
44.116
16.217
-138.963
21.123
21.053
16.242
16.220
-116.428
43.409
149.049
-116.045
21.456
9.937
10.059
9.519
21.176
9.985
16.243
49.603
21.115
21.247
9.965
9.932
151.499
21.569
57.304

5.
39.9
20.
10.
10.

0.

0.

0.

0.

24.

10.
11.1

276.

33.

457.

10.

14.

19.6

27.

Pn
Pn
Pn

Pn

PKP

P

Table 1. (Continued.)
Year, Day, Hour, Min, Sec. Latitude Longitude Depth Phase

1991 354 02 06 05 24.720 93.103 41. P
1991 356 08 43 13 45.533  151.021 25. P
1992 001 10 12 20 44.984 9.962 23.1 Pn
1992 002 19 41 45 5638 -73.832 134. P
1992 014 12 22 22 51.534 = 16.181 10. Pn
1992 023 06 27 39 38.356 20.307 10. Pn
1992 033 00 31 30 -51.547  139.704 10. PKP
1992 048 00 01 57 79.191  124.482 10. P
1992 048 19 23 14 46.761 9.505 10. Pn
1992 052 20 50 32 45.463 14.328 11. Pn
1992 062 12 29 40 52.915  159.886 3. P
1992.065 14 39 10 52.9 159.619 45. P
1992 067 01 53 38 10.210  -84.323 79. P
1992 073 17 18 43 40.2 39.500 2712 P
1992 103 08 19 30 43.964 13.022 10. Pn
1992 104 01 20 01 51.157 5.815 15. Pn
1992 112 22 28 06 43.264 17.961 33. Pn
1992 126 16 48 03 43.286 17.471 10. Pn
1992 129 06 44 39 47.248 9.584 10. Pn
1992 129 07 51 25 47.233 9.564 10. Pn
1992 130 05 37 58 49.953 7.409 10. Pn
1992 136 00 43 42 47.239 9.543 5. Pn
1992 140 14 25 04 49.105 6.623 18. Pn
1992 142 04 59 57 41.591 88.805 0. P
1992 148 18 14 00 44.406 11.737 10. Pn
1992 149 09 52 42* 44.150 11.466 5. Pn
1992 149 12 26 02* 43.966 11.977 13.6 Pn
1992 286 13 09 56 29.888 31.223 247 P
1992 297 23 19 47 42.503 45.073 33. P
1992 323 21 10 41 38.300 22.428 10. Pn
1992 326 05 07 23 35.931 22.443 70.2 P
1993 027 23 41 00 35.963 22.511 62.8 Pn

* Location and time information from the Istituto Nazionale di
Geofisica, Italy.

which is equal to 1 for linear polarization and 0 in the worst
case of ‘spherical’ polarization, when all eigenvalues have
the same size.

Figure 2 shows a seismogram example demonstrating a
few characteristics of the eigenvector analysis. For this data
example (year 1992 day 48 hour 19) with an epicentral
distance of 385km and backazimuth of 235° a number of
regional phases are visible. The main phases for this distance
range are P,, B, §, and S, They are visible in the
three-component seismogram on the top. The lower traces
give polarization attributes computed using a gliding window
with a length of 2s: the rms amplitude of the
three-component _seismogram or ‘three-component size’
(fourth trace) VZ,- N= 2,- S;; shows F,, S, and §, clearly.
The first-arriving P, shows up with somewhat smaller
three-component size, but with the highest rectilinearity (2),
with close-to-ideal linear polarization. A line gives the
critical rectilinearity level of 0.9. Only P, and F, exceed this
level. Since the eigenvalues are related to energy, error bars
can be obtained from the F-test (sce Bokelmann 1992). S,
shows up with higher rectilinearity than other § phases and
also with substantial three-component size. The horizontal-
vertical ratio (H/V)VS, +8,/S, and similarly the radial-
transverse ratio (R/T) computed from the elements of the
covariance matrix are also indicative of the phase character.
Values of H/V=1 and R/T =1 are shown by lines
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Figure 2. Polarization attributes for three-component data indicative of body-wave phases. The three-component amplitude and the rms
amplitude of the three-component seismogram show the main phases clearly. Rectilinearity and component ratios allow determination of the

wave type.

indicating polarization angles near 45°. For the S-phase train
H/V shows very clear horizontally polarized phases S,, S,
and L, whici also show small values of R/T. This
radial-transverse ratio for P phases shows clearly radially
polarized energy. In summary, polarization is an important
tool for phase identification.

In the following we want to use polarization data for the
set of P and PcP phases. For these phases, polarization
attributes are slowly varying (Fig. 2). In fact, they are also
rather insensitive to the particular choice of window length.
On the six three-component stations we observe for P, a
backazimuth of 6, =240.4°+ 5.5° and an incidence angle of
¢, =44.9°+4.2°. These angle estimates correspond closely
to values extracted manually from hodograms and are near
predicted values from the IASP91 earth model and source
locations from Table 1 (6, =235.17° and ¢, = 40.02°).

Typically, we have data from six three-component stations
available. Computing standard errors from the empirical
distribution of these values, the average uncertainty is 3.5°
for the incidence angle and 4.9° for the backazimuth. These
are values, which may be seen as typical for events with high
signal-to-noise ratio.

‘A slightly different approach was taken by Jurkewicz
(1988), who proposed averaging covariance matrices of
individual three-component stations before performing the

eigenvector analysis to stabilize the estimates. In any case,
polarization analysis lends itself to very efficient semi-
automatic processing. Caution is required, however, for
phases closely spaced in time, particularly if their amplitudes
differ substantially. For regional phases this case is not
uncommon. Window lengths in this study are allowed to
vary depending on data type and quality. The median
window length is near 3.5 s. Similarly, corner frequencies of
a zero-phase bandpass filter were allowed to vary within
0.6-4 Hz to adapt to the different wave types.

2.4 The mislocation hemisphere

Figure 3 shows part of the lower hemisphere (0°-50°) of
polarization anomalies, namely deviations of observed
polarization from predicted polarization, where predicted
again refers to values computed from the IASP91 model
with source locations from Table 1. Here the free-surface
effect is taken into account, as will be discussed below. In
such a display, the centre corresponds to vertical incidence;
the perimeter gives 50° incidence with north at the top. We
choose this type of diagram to facilitate comparison with
predicted polarization patterns from anisotropic models.
Multiple nuclear events from two source regions (Nevada,
Tuamotu) give rather consistent deviations of polarization to
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Figure 3. Lower hemisphere under the GERESS array (to 50°
incidence) showing event polarization anomalies averaged over all
three-component instruments. In this display (and the following
ones), north is up. Lower hemisphere locations of first-arriving
phases for a few geographical regions are shown. Note the
consistent deviation to northern directions for phases steeply
incident from the north.

more northern directions. Also other geographic regions
with several nearby events give rise to consistent
polarization effects. For steeply incident phases from the
north there is a general deviation to more northern
directions, while the southern part of Fig. 3 shows tangential
deviations, apparently varying rapidly over the lower
hemisphere. For example, polarization anomalies from
northern Italy and Switzerland show opposite tangential
effects. However, based on polarization data alone, this
behaviour can not be interpreted in terms of heterogeneity
or anisotropy. Consistently occurring source mislocation
effects for these regional distances might also cause such
variation. While this may be a problem of either polarization
vector data or propagation vector data taken by itself, the
difference is insensitive to source location errors and also to
distant lateral heterogeneity. Instrument calibrations were
performed daily. Substantial deviations from the nominal
response were rare and the correction had a rather small
effect on the lower hemisphere representation.

2.5 Free surface

Conversion at the free surface perturbs the incidence angle
of the polarization direction. The apparent incidence angle
¢. for a P wave is given by

2sin (¢,)VA” —sin’ (¢a)]
A% - 25sin? (¢,) '

with the velocity ratio A=v,/v; (Aki & Richards 1983).
The dependence of ¢, on ¢ is shown in Fig. 4 for a number
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Figure 4. Free-surface effect on polarization incidence angles for a
set of Poisson ratios.

of Poisson’s ratios k, which are related to the velocity ratio
A by k=(A"%2-05)/(A"2—1). The three values are
k =0.2 (A=1.63; dotted line), « =0.25 (A =1.73; solid
line) and k =0.3 (A = 1.87; broken line). Fig. 4 shows that
the free-surface effect causes incidence angle deviations of
several degrees. The free-surface correction is particularly
important for large incidence angles. Variation of « from
x =0.25 by 0.05 produces offsets within 5° in the incidence
range of our study (4°-40°). The deviation between the
curves is within a few degrees. For the free-surface
correction (Fig. 3) we used a crustal Poisson ratio of
x =0.25. This corresponds closely to the upper crustal mean
value observed in the KTB drill hole, which is located about
150 km north-west (Fig. 1a) in a similar crystalline geological
setting (Fig. 1). Without this correction, the lower
hemisphere has a distinctly different appearance (Fig. 5)
with a clear radial component. The mean of this radial
component is 5.1° oriented outwards. Clearly, the
free-surface correction is an important and observable
effect, which must be taken into account. On the other hand,
we have seen that there are clear effects in Fig. 3 beyond the
simple effect of crustal Poisson ratio alone. For the southern
part of Fig. 3 the radial effect almost vanishes.

2.6 Array measurements

Propagation directions (6,, ¢,) can be extracted from array
data either from traveltimes or from fk-analysis. Charac-
teristics of this problem have been studied by Bokelmann
(1993), where it was shown that small-array data like the
ones in this paper can produce propagation vector data with
reasonable uncertainty, given that topography (Fig. 1) is
taken into account. We obtain the mislocation pattern of
Fig. 6. Conversion from slowness p to incidence angle
¢, =sin"! (pv) was done using the local velocity estimate of
v=52kms™' obtained from 3-D array analysis (Bokel-



Figure 5. Lower hemisphere representation of polarization
anomalies (without free-surface correction). Compared with Fig. 3
there is a clear radial component with a mean of 5.1°. Clearly, the
free-surface effect gives rise to an observable effect which must be
corrected.

mann 1993). In that paper, Nevada and Tuamotu nuclear
events were studied. These show comparatively small
deviation in Fig. 6. Nevertheless, these deviations turned out
to be statistically significant (Bokelmann 1993). There are
even larger anomalies in the data though. The northern
deviation for steeply incident phases from the north, which

Figure 6. Propagation vector anomalies from array data analysis
shown on the lower hemisphere (0°-50°).
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was observed for polarization data (Fig. 3), is not apparent
in the array data. Interestingly the patterns for Yugoslavia
and Romania are very similar to observed polarization
anomalies in Fig. 3 as well as the rapid variation of
Switzerland and northern Italy. This suggests that either
lateral heterogeneity or source mislocation is affecting
propagation and polarization directions.

For an epicentral distance of about 400 km the mean
tangential deviation between Switzerland and northern
Italian events would require a relative source mislocation of
about 70km occurring consistently in the PDE solutions
(Preliminary Determination of Epicenters, Monthly Listing,
US Geological Survey) between the two source regions.
While this is not impossible, lateral heterogeneity, the
Alpine root, might also cause the azimuthal deviation, or
respectively, a source mislocation in the PDE Builetin
(Table 1). Both would simultaneously perturb propagation
and polarization directions.

Nevertheless, the procedure of relative analysis of
polarization and propagation data gives data which are
independent of the source location and distance lateral
heterogeneity. The relative data (polarization—propagation
vectors) from the 95 events are shown in Fig. 7. Nevada,
Tuamotu, and other regions still show up with consistent
effects. Naturally, the random scatter is larger for these
differences than for the individual data. For two events the
difference data were clearly dominated by noise and had to
be removed. It may seem surprising that source mislocation
and distant heterogeneity do not affect the relative data.
This can be explained by the fact that the method does not
require knowledge of source locations at all. While the
propagation vector is used to determine the location in the
lower hemisphere, the polarization vector deviation
indicates the presence of anisotropy. This allows the study of

Figure 7. Difference of polarization and propagation vectors shown
on the lower hemisphere (0°-50°). These are the data for the
inversion procedure in the latter part of this paper.
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anisotropy under the receivers. Later on, we use the data of
Fig. 7 in an inversion for anisotropy. But first, we briefly
review wave-propagation theory in anisotropic media.

3 REVIEW OF PROPAGATION IN
ANISOTROPIC MEDIA

Here we wish merely to state features of anisotropic wave
propagation which are of particular importance in this study.
Comprehensive treatment of the topic has been given, for
example, by Crampin (1981). In a general anisotropic
medium, the solution for a propagating plane-wave front
follows from the Ansatz

u(r,?) = a(r)f (t — nr/c), 4

where a(r) describes amplitude and polarization of the wave,
while the time dependence is given by f() depending on the
phase velocity ¢. From the equation of motion, we get

mya, = c’a,, o)
with the Christoffel matrix
m; = Cijklnjnk/ p- (6)

Eq. (6) has the form of an eigenvalue equation with the
square of the phase velocity appearing as the eigenvalue.
Hence polarization vectors a serve as eigenvectors. Owing to
the symmetry of the elasticity tensor c;;, we can always
choose a set of three mutually perpendicular eigenvectors.
The typical way to solve Eq. (6) is to specify a propagation
direction m and solve for the three eigenvalues and
associated eigenvectors. It is clear that in general
propagation and polarization vectors do not coincide for
waves propagating in anisotropic media. On the other hand,
they coincide in the isotropic case. Such deviations can be
used to determine effective medium anisotropy. For the case
of P waves, we will discuss this discrepancy more closely
below, since both of these directions can be observed using
arrays and three-component stations.

The wavefront propagates in the normal direction with
the phase velocity ¢ =|V¢|~'. Vr is the propagation vector,
which can be estimated from data of small arrays (see also
Helbig 1958). On the other hand, the polarization vector a
gives the direction of local particle motion. It is measured
directly by polarization analysis. Neither of these two
vectors should be confused with the group velocity vector,
which is the direction, in which energy propagates
(Musgrave 1970). Crampin, Stephen & McGonigle (1982)
showed that for weak anisotropy the differences between
polarization and group velocity directions are small. This is
intuitively clear, since the energy should propagate in a
direction near the particle motion.

While the angular deviation between phase and group
velocity vectors received quite some interest in the literature
(Crampin 1981; Crampin et al. 1982), the relation between
phase velocity and polarization vectors has been discussed
for model crystals (Crampin 1978, 1981; Crampin et al.
1982), but due to a lack of appropriate data, there are only a
few applications to real data so far (White et al., 1983; Li,
Leary & Aki 1987; de Parscau 1991a). However, deviations
of polarization directions from propagation directions can be
substantial as will be seen below. In the following we want
to illustrate this effect and later on exploit it in an inversion
for effective anisotropic structure. It is important to note
that the polarization depends only on local anisotropy. This
is illustrated in Fig. 8. In the context of anisotropy, P-wave
polarizations have been studied for VSP borehole data by de
Parscau (1991a) and Li er al. (1987). However, with a 1-D
array in the borehole, there is no control over off-azimuth
arrivals.

We have seen that our method of relative analysis is
insensitive against distant heterogeneity. But how about
near-receiver heterogeneity? Inspection of polarization
hemispheres for individual three-component instruments
showed some station-dependent scatter which is partly due
to deviations of the instrument response from nominal
values. Small-scale heterogeneity near the receivers may

array of 3-component stations

7  TI __YT7

L
\4 v v v

k w2 <L k
A4 v v

predicted propagation direction

§ = propagation direction

d = polarization direction

wavefront

Figure 8. Illustration of plane P-wave propagation in the crust under the three-component receiver array. In an anisotropic medium, the
polarization directions generally deviate from the propagation directions. This deviation, here shown for the incidence angle A®, is used to
infer effective crustal anisotropy. Note that the propagation direction typically deviates from the predicted propagation direction, due to source
mislocation and distant heterogeneity. With observations of polarization and propagation directions distant effects can be excluded. Local
disturbances of the wavefront are downweighted by averaging over all three-component stations.



also cause waveform distortions. Hence, polarization data
from single three-component stations have to be regarded
with caution. For our purposes we average over all
three-component stations of the array, thereby obtaining
average polarization attributes, where array stations are well
distributed over an aperture of 4km. The effect of
near-receiver small-scale heterogeneity is expected to be
nearly uncorrelated from station to station and we expect
the averaging procedure to be effective in averaging out
most of its effect on the difference pattern. The effect of
larger scale heterogeneity on the other hand, is likely
correlated from station to station. We obtain a net effect in
the polarization vectors; similarly in the propagation vectors.
The difference should therefore again be approximately
unaffected. This argument suggests that although scatter is
invariably present in difference patterns like Fig. 7, the
scatter is dominated by random fluctuation and not by biases
from discrete local scatterers. A very important feature of
the GERESS array is the absence of a seismologically
significant near-surface low-velocity layer, which can be
shown from inspection of the train of P-S conversions.

4 UPPER CRUSTAL ANISOTROPY

Anisotropy in the vicinity of the receivers, however, does
affect the relative data in Fig. 7. Which depth range are
these data sensitive to? We have seen that polarization is a
local property. This means that finite-wavelength seis-
mological phases are affected by anisotropy in the depth
range equivalent to about a wavelength. For the typical
dominant frequencies in this study we have wavelengths of
about 6 km. Hence, we expect to estimate a spatial average
of anisotropic properties of the top few kilometres in the
upper crust. Since we average over all three-component
stations in the array, we assume that discrete heterogeneity
within the array can be ignored and allow for an anisotropic
but homogeneous model.

In this context, there are several phenomena which may
cause effective anisotropy. Intrinsic anisotropy of minerals,
as well as small-scale structure with some preferred
symmetry lead to directional dependence of macroscopic
elastic parameters and hence propagation velocity. Sedimen-
tary layering, with a potentially prominent effect, is not
present under the array. However, cracks, fractures and
rock foliation (Babuska & Cara 1991), if certain orientations
prevail, can give rise to substantial effects. Since our data
are sensitive to a spatial average over several kilometres, we
expect macroscopic anisotropic behaviour either if the
anisotropy is locally very strong or if preferred orientation is
spatially coherent over a depth range of several kilometres
within the topmost part of the upper crust. The latter may,
for example, be the case for cracks caused by the regional
stress field. Note that our P-wave polarization data are
sensitive only to the depth range where brittle deformation
is expected.

4.1 General anisotropic model/transversely isotropic case

Since the cause of anisotropy is not known beforehand, it is
preferable to find elastic constants without restricting
assumptions. In the following we study the type of
constraints P-wave polarization data impose on elastic

Crustal anisotropy 153

constants. We restrict our attention to the case of hexagonal
symmetry, since this is a viable model for most of the
possible causes of effective anisotropy mentioned above. An
exception may be more complex intrinsic anisotropy of
individual crystals, which is not considered here. In the case
of a hexagonal or transversely isotropic symmetry, the
elastic constant matrix c;;, has the simple shape

(ST} €117 2666 €13
€11~ 2666 11 €13
Cijkt = Cy3 Ci3 C33

Cas
Ce6

M
with five unknowns, assuming that the symmetry axis is in
x5-direction. Given this particular symmetry, velocity v and

polarization direction of P waves depend only on the angle
x between propagation direction and symmetry axis x,.

42 Modelling of P-velocity and polarization patterns

White (1983) and de Parscau (1991b) give exact expressions
for velocity v and polarization angle ¢

pv” = 5(c1y +cge) sin® g + (ca3+cug) cos” p +

{l{c11 —c4a) sinzx — (€33~ Caq) cos> xlz
+4(c,3 + cq4)? cos? y sin ¥ 112, ®

(ci3tcaq)cosysiny
pv*(x) — (cyy8in’ g + gy c08” ¥)’

where £ is measured from the symmetry axis. Eqs (8) and
(9) depend only on the four elastic constants c;;, €13, €33
and c,,. The last constant ¢4 in eq. (7) can be determined
only from quasi-transversely polarized shear waves. de
Parscau (1991b) showed that (9) can be simplified to

tan ¢ = )

7 sin 2y
tan2f =————— 10
¢ 1-(1+1)sin’x (10)
using the two parameters
_C13 +Cyy (11)
€33~ Cyqq
and
c1—¢
=11 44 (12)
C33 ~ Cyq

This shows that we will, for example, not be able to
determine independently the four elastic constants ¢y, ¢;3,
¢33 and ¢4, from P-polarization data. Instead, constraints on
these constants must be derived from n and 7 using the
non-linear relations (11) and (12). In addition to n and 7,
the orientation of the symmetry axis is unknown. Therefore
we have two additional unknowns representing strike and
dip of the symmetry axis. Both 7 and 7% can be seen as
measures of anisotropy. Since c¢,, and c,; give pv® parallel
and normal to the symmetry planes, 7 gives a measure of the
velocity deviation between these special directions. 7 is



154 G. H. R. Bokelmann

more difficult to interpret, but it can be approximately
related to the P-velocity anisotropy at small incidence angles
nearly normal to the symmetry planes (de Parscau 1991b).
For an isotropic medium we have n=7=1.

A number of criteria on the elastic coefficients in eq. (7)
can be derived from requiring stability, namely the condition
that deformation is associated with non-negative internal
energy. The requirement is that (7) is positive semi-definite
(Backus 1962). It follows that all diagonal elements are
non-negative. Furthermore we have ¢;; = ¢4 and cy5(cq; =
ces) = €35 In our context, bounds on elastic coefficients are
important for finding bounds on the parameters n and 7 and
for rejecting physically impossible models. Postma’s (1955)
inequality
(c11~ Caa)(C33 — €as) Z (€13 + €4a)’ (13)
shows that 7=0. Since 7 gives a measure of the size of
P-wave anisotropy, an upper bound may be given from an
estimate of maximum possible anisotropy. The sign of
¢;3 + ¢4y, Which is the nominator of 7, is found to have
substantial importance for the polarization behaviour. Cases
with ¢,3 + ¢;, =0 are physically possible, but they are found
only in very carefully planned laboratory experiments
(Helbig & Schoenberg 1988). In these cases, the polarization
angle is found to rotate in a sense opposite to the
propagation direction, in contrast to the normal case with
rotation in the same sense. For real Earth studies it is
reasonable to assume c;5 +c,, =0, which gives us a lower
bound 7 =0. An upper bound on n can be found by
applying a requirement that c,,/c,, and c53/c,, be within a
certain range.

Now we illustrate polarization behaviour for two special
cases, namely (7, 7)=(1.43,2.13) and (0.82,1.00). These
cases correspond to elastic parameters for models HCD1
and HCS1 (Crampin 1984), which give the effective
anisotropy associated with a model of oriented cracks
(Hudson 1981) in the limiting cases of fluid-saturated and
dry conditions. To derive this model of oriented cracks,
Hudson (1980) used mean field theory (Keller 1964) and
derived expressions valid to second order. In his
perturbative treatment the stiffness matrix can be rep-
resented as

= A0 1 2
Cijtt = Cijrr t Cijaar F Cijra (14)
for long wavelengths, where the zero-order term gives the

isotropic reference model specified by the Lamé parameters
Aand u

Ukl )‘5;,5k1 + M(alk + 5115/k)- (15)

The first- and second-order perturbation terms can be
interpreted as a first-order effect of the cracks and
crack—crack interaction. For the crack density € =Na’/V
(N/V =number of cracks per volume, a =mean crack
radius) they are

A? A? A(A+2u)
A? A? AA+2p)
. e |AMA+20) AA+2p) (A+2w)
Cippt = — 7 2
»r I
u?
0
(16)

and
Aq/(A+2u) Nql(A+2u) Aq
Ag/(A+2p) Nq/(A+2u)  Ag
2 Agq Aq (A+2u)q
Ctzjkl - lE_S - D’
X
0
17)

with g =15(A/n)*>+28(A/p)+28 and x=2u(3A +8u)/
(A +2u). Here the cracks are aligned perpendicular to x5. D
is the diagonal matrix with trace

trace (D) = (uyy, U1y, Uy Uss, Uss, 0). (18)

u,,, depends on conditions on the crack face. The
dependence of Cijkr ON the crack parameters is only through
D and is further given by

uu:g%\i—z:))/(l + k) (19)
and
o 012 o
with k£ and m given as

=<)\’+2u’> (A +2p) 1)

ndp (A+p)

and

_4p" (A +2u) 22)

rdp 3\ +4p)

The e range of interest in this study is between 0 and 0.1.
For such low values of ¢, the second-order approximation is
considered uncritical (Crampin 1981). d gives the (large)
aspect ratio of the cracks and A’ and u’ are the Lamé
parameters within the cracks. The two extreme cases with
particular physical significance are (1) w'=A'=0 and (2)
p' =0 with non-zero A'.

The first case models dry cracks (HCD1), with free
surfaces at the crack faces. In this case k and m vanish. The
polarization pattern is determined solely by the two
parameters (7, 7) = (1.43, 2.13). P-wave phase velocities and
polarizations for this model of vertical east-west oriented
cracks are shown in Fig. 9 in lower hemisphere
representations, where for display purposes the symmetry
axis is shown pointing upwards in the paper plane. We
choose the unconstrained absolute levels of ¢,;, ¢4, and cq
to conform to model HCDI (background velocity v, =
5.8kms ', vg=3.349kms ™", density p = 2.6 kms ).

This choice affects only the P-velocity pattern, but not the
polarization pattern, which depends only on 7 and =
Propagation in the plane of aligned cracks gives high
velocity and the P-wave anisotropy for this ideal model is 24
per cent. The right-hand side shows polarization anomalies,
namely deviations of the polarization from propagation
directions. In general, the polarization direction deviates to
the direction of larger phase velocity, diverging at the
symmetry axis and converging to the symmetry plane.
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5.667
5.493

5.320

4.973
4.800
4.626

4.453

Crustal anisotropy 155

Deviation of Polarization from Propagation Directions

Figure 9. Lower hemisphere representation of P-wave velocity and polarization anomalies for (m, 7) = (1.43,2.13) corresponding to the

dry-crack model HCD1 of Crampin (1984).

For the second case (model HCS1), which models
saturated cracks, we obtain Fig. 10. The parameters are the
same as in Fig. 9, but with aspect ratio d =0.0001 and
A’=2.25GPa. The polarization pattern is then given by
1 =0.82 and t=1. Note that this velocity pattern differs
substantially from the dry-crack model: the symmetry axis
also has fast velocity. This gives rise to 7=1. Clearly, 7 is
very senmsitive in distinguishing dry-crack conditions from
saturated ones. The difference between minimum and
maximum velocity with 3.5 per cent anisotropy is

P Wave Velocity

5.800

5.771

5.742

5.713

5.685

5.656

5.627

5.598

substantially smaller than for the dry-crack model. The
maximum velocity achieved is somewhat higher than for the
dry-crack model though. Polarization anomalies are smaller
but give a more complex pattern.

5 MODEL FITTING

Observed polarization anomalies can be related to the
parameters i and 7 describing the anisotropy. The inverse
problem requires the solution of the eigenvalue problem (6).

Deviation of Polarization from Propagation Directions

Figure 10. Lower hemisphere representation of P-wave velocity and polarization anomalies for (7, 7) = (0.82, 1.00) corresponding to the

saturated-crack model HCS1 of Crampin (1984).
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In this paper, this is done by non-linear parameter fitting. As
shown above, parameters in the inversion are » and 7, but
also two angles 8 and @ describing azimuth and dip ‘of the
symmetry axis. In general, we will not be able to determine
the four elastic constants independently. Instead we may
obtain two non-linear constraints on these parameters from
n and 7, which we may supplement with a priori
information. In our case, such information is given by
reasonable assumptions about the reference velocity. In the
following we use reference velocities of the above examples
HCD1 and HCS1. This enables us to display velocity
patterns for the inversion results also.

For each event we have an observation of polarization
direction (6, ¢,) and propagation direction (6, ¢,). We
wish to compare the angular differences

(AO) _ ( 6,— 6,

Ap) ey~ ¢s)

with predictions from models depending on the parameters
(6, P, 1, 7), which we call

[Ae;(n, 1,6, <7>]

Adi(n, 7,6, ¢

for the ith event. We obtain the best-fitting model by
inspecting the misfit on the sphere

o 14
S(6, ®, 7, 1) =N > {cos™!
i=1

x [cos (A6, - A6}) cos (A, ~ A$)]F, (23)

which is the analogue of the standard sum-of-squares misfit
criterion on the sphere.

The models HCD1 and HCS1 have shown that the
polarization pattern may vary considerably, depending on
the choice of n and 7. We start the discussion of inversion
results by studying the dependence of the misfit on
symmetry axis orientation for these two special cases. 7 and
T are fixed to (1.43,2.13) in the first case of dry cracks and
(0.82,1.) in the case of saturated cracks. We are left with
fitting §, and ®. The non-linear search may use a rotation of
the elastic constant matrix

Ciikt = Vip Tig Tir TisCpars (24)

with the rotation matrix 7. While this allows for all types of
symmetry, we may more efficiently use eq. (9) in our case of
hexagonal symmetry. Results for the dry-crack case are
given in Fig. 11 showing the achieved misfit § given in
degree? by eq. (23) depending on the orientation of the
symmetry axis, namely its location in the lower hemisphere.
Axes orientations with small misfit are near the circum-
ference. The smallest achieved misfit is 135 degree?, which
is substantially larger than the starting misfit of 68.87
degree®. The simple dry-crack model is clearly incompatible
with the data. On the other hand, the saturated-crack model
(Fig. 12) gives reasonable variance reduction of about 41 per
cent. Fig. 12(a) shows that small misfits are achieved for
symmetry axis locations in two regions in the south-west and
north-east. Only the south-western region gives rise to
statistically significant solutions. The lowest contour shows
the confidence region where the critical misfit level is
computed from the f-distribution as

k
Soie =S| 1 3= fuw-o1— ) e3)

3850.450

3319.457

2788.465

2257.472

1726.480

1195.487

664.495

133.502

Figure 11. Fitting of the dry-crack model. Misfit on the sphere (23) is shown in degree?, depending on the symmetry axis orientation. Smaller
misfits are found for axes located near the horizontal plane. This dry-crack model does not improve the misfit and hence cannot explain the
data.
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(@ Theta=208.0 Phi=36.0 Eta=0.82 Tau=1.0 $=40.9453

(lower hemisphere projection)

198.6020

176.1301

153.6582

131.1863

108.7144

86.2425

63.7706

41.2987

P Wave Velocity (b} Deviation of Polarization from Propagation Directions

5.799

5.771

5.742

5.714

5.685

5.657

5.629

5.600

Figure 12. Fitting of the saturated-crack model: (a) misfit in degree’ depending on symmetry axis orientation from 0° to 90° incidence; (b)
best-fitting model shown in a partial lower hemisphere display (0°-55° incidence). The symmetry axis has a strike of 208° and a dip of 36° to the
south. The lowest contour line gives the critical level. Polarization deviations are given for 0°, 10°,...,50° incidence.

(Jenkins & Watts 1969), where S, is the minimum misfit and dip 54° to the north. The optimum model corresponding

and k =4 the number of parameters. Higher contours give
two and four times the separation of the critical level
(1 —a=10.95 per cent confidence level) from the minimum
level. The optimum model has a symmetry axis orientation
of azimuth 8 = 208° and dip ® = 36°. The symmetry plane is
oriented normal to the symmetry axis, and has strike 118°

to the global minimum in the south-west is shown in Fig.
12(b) by its velocity and polarization pattern. To be directly
comparable with the data, only the partial lower hemisphere
from 0° to 55° is shown. Beside the symmetry plane, also the
symmetry axis shows up with fast velocity in the lower part
of the figure. The polarization deviations in the right-hand
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side of Fig. 12b are given for 0°, 10°,...,50° incidence and
may be compared with the data in Fig. 7. The major features
of the data set are explained by the model.

The results for assumed dry- and saturated-crack models
are quite different. The saturated-crack model gave a
reasonable fit to the data and a strike angle of the
high-velocity plane of 118°, while the dry-crack model was in

the parameter set (8, ®, n, ), which unlike the previous
example does not assume a particular physical fracture
model. With four parameters and the given bounds on % and
T this search is not particularly computer intensive, but
guarantees the globally optimal solution, given that the
bounds are appropriate and the sampling is sufficiently fine.
The misfit pattern in Fig. 13(a) is not unlike the one for the

clear conflict with the data.
Now we perform the more general non-linear search for

saturated-crack model. However, the optimum in the
south-west is more pronounced now and the variance

(@) Theta=203.3 Phi=41.05 Eta=0.887 Tau=1.09 S=38.8202

(lower hemisphere projection)

223.9010

197.4982

171.0953

144.6925

118.2897

91.8869

65.4840

39.0812

P Wave Velocity {b) Deviation of Polarization from Propagation Directions

5.696

5.653

5.611

5.569

5.526

5.484

5.442

5.399

Figure 13. Result of the general non-linear search: (a) misfit (0°~90° incidence); (b) optimum model in the partial lower hemisphere display
(0°-55°). With the symmetry axis at 203.3° and 41.05°, the (high-velocity) symmetry plane has a strike of about 113° and dips of about 58° to the
north. The optimum set of parameters is 1 = 0.887 and 7 = 1.09.
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Theta=203.300 Phi=41.0500 eta=0.887000 tau=1.09000 S=38.8202

Tau

0.5 1.0

Eta

112.6590

102.1172

91.5755

81.0338

70.4920

59.9503

49.4085

38.8668

Figure 14. Misfit around the optimum model (black square) keeping the orientation fixed. The lowest contour line shows the confidence region
around the best-fitting model. Numbers 0-13 refer to percentages of mica content in a gneiss model (see test).

reduction is 3 per cent larger, now about 44 per cent. The
resulting parameters are § =203.3°, ®=41.05°, 5 =0.887
and 7=1.09. The maximum P-velocity difference of the
model is about 4.7 per cent. The change in orientation from
the fit of model HCS1 by a few degrees is insignificant
considering the large confidence region in Fig. 12(a). In the
general model, the confidence region is substantially smaller.
For the polarizations, the main difference is the behaviour in
the south-western part, where the general model predicts a
somewhat smaller effect. This corresponds to the smaller
velocity contrast in that region. The high-velocity symmetry
plane strikes with about 113° and dips with about 49° to the
north-east.

In the search we varied n and 7 independently. But can
they be resolved independently by the data constraints or
are they subject to a major trade-off? Fig. 14 shows the
misfit around the optimum model keeping the symmetry axis
orientation fixed and varying n and 7. The lowest contour
again shows the confidence region of admissible 1 and T,
which extends for n from 0.76 to 1.07 and for 7 from 1 to
1.2. The isotropic case at =1 and 7 =1 is well outside the
highest contour for four times the critical misfit separation.

6 WHAT CAUSES THE EFFECTIVE
ANISOTROPY?

In principle, intrinsic anisotropy as well as macroscopic
effects from oriented cracks, fractures or layering can cause
anisotropy of this size. To understand the nature of this
anisotropy, it is of considerable value to also consider
surface geological evidence for the region. The array is
located on an outcrop of granite and gneiss. While the
granite apparently has no preferred alignment, the gneiss
shows strong foliation with consistent orientations. The
strike is approximately 120° and the dip 50°-60° (Ott,
private communication). This closely coincides with the
orientation of the high-velocity planes for the best-fitting
model from the unconstrained inversion (Fig. 13) suggesting
that rock foliation is the major cause of anisotropy in this
case. The size of the anisotropy suggests that the foliation
direction is spatially consistent over some distance, perhaps
several kilometres. In fact, surface geology does suggest that
this is indeed the case (Ott, private communication). Rock
foliation as a cause of effective anisotropy has been
discussed before {e.g. Liischen et al. 1991).
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But is rock foliation the only factor involved and how
does the overall anisotropy relate to intrinsic properties of
minerals? Gneisses typically contain large amounts of mica,
a mineral giving rise to very large anisotropy. Since this
mineral is usually quite well oriented (Wang, Lin & Wenk
1975), we may expect a major effect on the observed
anisotropy. In fact, mica orientations are typically dominant
in forming macroscopic gneiss foliation planes (Suppe 1985).
Pure mica, however, does not explain the observed effect:
Aleksandrov & Ryzhova (1961) give elastic constants for
muscovite, for which we compute 1 =0.625 and 7=3.88.
The latter value is clearly incompatible with our results.
More realistic models would include structural complexity,
the occurrence of several types of intrinsic anisotropy, and
fractures or cracks in the subsurface. In fact, we have
physical models at our disposition predicting some of these
effects. For a medium consisting of anisotropic layers,
Schoenberg & Douma (1988) give expressions for averaging
elastic constants to obtain effective elastic constants in the
long-wavelength assumption. Also, for such a medium,
effective parameters 7 and 7 are composed of the averaged
elastic constants as

respective quantity. If we take the simple approach of
assuming that due to their large effect only micas contribute
to the bulk anisotropy, we may simply compute 7 and 7 for
different percentages of mica content. For a fraction of 30
per cent mica after Wang et al. (1975) and 70 per cent other
material assumed to be isotropic we obtain 7 =0.816 and
7 =1.74. While this is far outside the confidence region of
the observation, values for 3-8 per cent mica content fall
within the confidence region (Fig. 14). These are low values
compared with mica contents in typical gneisses (Wang et al.
1975). We have to keep in mind though that certainly not all
of the mica minerals are fully aligned. Other constituents
may also play a role in defining the bulk anisotropy.
Satisfying the polarization data, this gneiss model is also a
plausible explanation in conjunction with the geological
data. Another possible model, however, is that of cracks or
fractures aligned in the direction of planes of weakness
which coincide with the gneiss foliation. Fitting a model of
aligned cracks after Hudson (1981) gave essentially the same
orientation. Resulting parameters were strike 114° and dip
50° for the symmetry planes. We also obtained a crack
density of € =0.09 and two Lamé parameters of the crack
material A’=0.049 GPa and u’'=0GPa. The associated

,,7:_01_3'"&, (26) error bars discriminate clearly against the dry-crack case,
€33~ Cyq where A’ =0 GPa. Such dry cracks give rise to large values
- of 7, which we have previously argued, are in conflict with

f:ﬁ.l_:_c_ﬁ, 27 the data. Based on the achieved misfit, the model of cracks
C34 ~ Cas opening along the foliation planes can not be ruled out.

. It appears difficult to distinguish between models of
using intrinsic anisotropy and cracks or fractures. In this case, one
_ 2 2 should consider all possible models. In fact, the occurrence
En1 = (en) = (€1l aa) + {1/ €39 (1 e33), (28) of cracks along plangs of weakness given by foliation planes
€13 ={ci3/cas){l/css), (29) is not unlikely. For small pressures in the laboratory, it is

very common to observe cracks opening along the foliation
€33 = 1/(1/c3a), (30) direction. This can be demonstrated, for example, with the
o= 1/(1/cs), 31) data of Wang et al. (1975). From their data we obtain values

where () denotes the thickness-weighted average of the

qSP Wave Velocity

of 7=1.25 at 1kbar pressure and much larger values up to
10 at lower pressure. Crack opening can be caused by the

gqSR Wave Velocity
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3.200 3.238

3.157 3.189

3.113 3.139

3.070 3.089

3.026 3.039

2.983 2.989

2.939 2.940

Figure 15. Prediction of shear-wave velocities for the optimum model on the full lower hemisphere (0°-90°). qSP is polarized parallel to the
symmetry plane and qSR perpendicular.



local stress field. Values for the strike of the maximum
horizontal stress direction o in the area are around 149° in
the KTB borehole (Brudy, Fuchs & Zoback 1993), but there
are also values in the range of 115° (e.g. Falkenberg granite,
Rummel, Baumgirtner & Alheid 1983). These values are
not far from the foliation strike. Hence crack opening along
the foliation direction is not unlikely, particularly if the fluid
pressure is high. However, we note that anisotropy in our
data set appears to be due to foliation rather than to vertical
cracks perpendicular to the smallest horizontal stress
direction. On the other hand, the regional stress field may
have an effect due to opening of cracks preferentially
parallel to the planes of weakness, which are given by the
gneiss foliation planes.

Perhaps additional insight can be gained if shear waves
are used. Fig. 15 gives a prediction of the shear-wave
velocities for the optimum model. However, unambiguous
determination of upper crustal anisotropy requires incidence
angles within the shear-wave window and sources close
enough to the receivers to not be sensitive to more distant
anisotropy. These conditions are difficult to meet for our
region. In contrast, P-wave polarization data from all types
of local, regional and teleseismic events may be used for the
study of local anisotropy.
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