First results of the (Infrasound-Seismoacoustic) "Ground Coupling Experiment"

Artemii Novoselov, Florian Fuchs, Goetz Bokelmann

Structure

- Experiment overview
- Sources signatures on collocated stations
- Parameter estimation
- Results
- Conclusions

Motivation

Lightning is often accompanied by strong acoustic energy (thunder), both at frequencies of sound (above 20 Hz) and/or in the infrasound frequency band (below 20Hz). It is believed that the thermal expansion due to the sudden heating of the air in the lightning channel leads to the shock wave and is responsible for the audible part of the thunder spectrum.

https://weathergeeks.org/what-is-a-red-lightning-and-is-it-real/

References: A. Few, 1974.Thunder signatures

Thunder seismic signals can be "simulated" in a cheap maneer with fireworks

Thunder Sequence

Former CTBT Test Site, Austria

Equipment

97 x Fairfield Nodal Z-Land Gen2 3C geophones (5 Hz) 4 x seismically decoupled Hyperion IFS-5111 infrasound sensors

4 x Plastic buckets with holes (wind reduction "system")

Sources

Hammer

Firecrackers

Rockets

Steps

Sources

11:15-11:40 F. Fuchs "Ground Coupling Experiment": Comparison of firework acoustic signals on co-located pressure and seismic sensors

Meteorological data

2.5

2.0

1.5

70

50

₩ 903.5 ₩ 903.0

m/s

o 200

ç

8 60

Metl

1m 2m 3m 4m 5m 12:30 13:00 13:30 14:00 14:30 15:00 Humidity 1m 2m 3m 4m 5m 13:30 12:30 13:00 14:00 14:30 15:00 Air Pressure ---- Pressure 12:30 13:00 13:30 14:00 15:00 14:30 Wind Speed 1m 2m 50 - 7m 12:30 13:30 14:00 15:00 13:00 14:30 Wind Direction 7m 12:30 13:00 13:30 14:00 14:30 15:00

Temperature

- Vertical meteorological profile from 1 to 7 m above the experiment
- Data sampling with minute periode

Source signatures on collocated sensors

Hammer

Hammer

Firecrackers

Firecrackers

0.4

0.005

0.010

0.015

Offset [km]

0.025

0.020

Sudden negative displacement and pressure increase followed by rarefaction

Firecrackers

0.005

0.010

0.015

Offset [km]

0.020

0.025

Seismic P-wave Acoustic wave

Steps

Parameter estimation

Density and Velocity of air

Density of air:

$$ho_a = rac{
ho M_a}{ZRT} \Big[1 - x_v (1 - rac{M_v}{M_a}) \Big]$$

Where ρ_a - density of air [g/cm3], ρ - pressure [Pa], T - temperature [K], x_{v} - mole fraction of water vapor, Ma - molar mass of dry air [g/mol], Mv - molar mass of water [g/mol], Z - compressibility factor, R - molar gas constant [J/mol*K]

Speed of sound in the air:

$$c_0^2 = \gamma rac{RT}{M} (1 + rac{2pB}{RT})$$

Where c_0 - speed of sound [m/s], **Y** - specific heat ratio, M - molecular mass of the air, B - second virial coefficient

Molecular velocity of the air: $v_{air} = rac{
ho}{
ho_a * c_0}$

References: Owner Cramer, 1992. The variation of the specific heat ratio and the speed of sound in air with temperature, pressure, humidity, and CO2 concentration.

A Picard et al., 2007. Revised formula for the density of moist air (CIPM-2007)

N. Edwards, 2007. Calibrating infrasonic to seismic coupling using the Stardust sample return capsule shockwave: Implications for seismic observations of meteors

Density and Velocity of the ground

Density of soil: 2.02 g/cm3* *Assumption

Ground coupling calculations

 A_{seis}

ce N. Edwards, 2007. Calibrating infrasonic to seismic coupling using the Stardust sample return capsule shockwave: Implications for seismic observations of meteors

Ground coupling calculations

ce N. Edwards, 2007. Calibrating infrasonic to seismic coupling using the Stardust sample return capsule shockwave: Implications for seismic observations of meteors

Coupling efficiency

Ground Motion Measure	Coupling Transfer Coefficient	Energy Coupling Coefficient
DISP	2.39+-0.5 nm/Pa	1.76 %
VEL	2.62+-0.5 um*s-1/Pa	
ACC	0.005+-0.001 m*s-2/Pa	
Ground Motion Measure	Coupling Transfer Coefficient	Energy Coupling Coefficient
DISP	2.63+-0.5 nm/Pa	1.76 %
VEL	2.37+-0.5 um*s-1/Pa	
ACC	0.004+-0.001 m*s-2/Pa	
Ground Motion Measure	Coupling Transfer Coefficient	Energy Coupling Coefficient
DISP	2.95+-0.5 nm/Pa	1.76 %
VEL	2.41+-0.5 um*s-1/Pa	
ACC	0.003+-0.001 m*s-2/Pa	

Coupling efficiency

Displacement: increases with offset Velocity: not conclusive Acceleration: decreases with offset

Ground Motion Measure	Coupling Transfer Coefficient	Energy Coupling Coefficient
DISP	2.39+-0.5 nm/Pa	1.76 %
VEL	2.62+-0.5 um*s-1/Pa	
ACC	0.005+-0.001 m*s-2/Pa	
Ground Motion Measure	Coupling Transfer Coefficient	Energy Coupling Coefficient
DISP	2.63+-0.5 nm/Pa	1.76 %
VEL	2.37+-0.5 um*s-1/Pa	
ACC	0.004+-0.001 m*s-2/Pa	
Ground Motion Measure	Coupling Transfer Coefficient	Energy Coupling Coefficient
DISP	2.95+-0.5 nm/Pa	1.76 %
VEL	2.41+-0.5 um*s-1/Pa	
ACC	0.003+-0.001 m*s-2/Pa	

Summary

We have talked about:

- Experiment
- Sources signatures on collocated stations
- Parameter estimation
- Results

Conclusions

Coupling efficiency and coefficients are on the order of magnitude reported by previous authors, which means that this holds true for very small offsets and high frequencies just as well as for any other offsets and frequencies

Acknowledgments

Goetz Bokelmann, Florian Fuchs, IMGW UniVie group

Thank you for your attention!

Any mind shattering ideas what to do with our data? Artemii.Novoselov@univie.ac.at