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Abstract Seismic stations The incident: Refinery explosion near Ingolstadt (germany) o

The explosion site lies 10 km south of
the Grafenberg array and is well cov-
ered by temporary broadband stations
of the AlpArray seismic network with
station spacing of 40 km.

On September 1st, 2018 a devastating explosion occurred
on the facility of an oil refinery near Ingolstadt, Germany.
We analyzed data of 400 permanent and temporary seis-
mic stations and find strong seismo-acoustic signals on
more than 80 seismic stations. The infrasound signal is de-
tectable on seismic stations within 10-350 km from the
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source, with 40 km spatial resolution. _— T
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We confirm the explosion site both by the seismic and S0
seismo-acoustic arrivals. Apart from seismic P- and S

waves, we identified three separate acoustic phases with

celerities of 332, 292, and 250 m/s, respectively, each of

which has a particular spatial pattern of positive detec-

tions at the ground. Seismo-acoustic amplitudes are

strongly affected by the type of seismic installation but 49°N
still allow potential insight into regional infrasound at-

tenuation.

On September 1st, 2018 a devastating explosion hit
the facilities of a refinery of BayernQil in the town of
Vohburg, near Ingolstadt in Bavaria, Germany. Local
newspapers reported the origin time of the explosion
between 03:00 and 03:15 UTC. 2000 people were
evacuated from their homes in the vicinity of the re-

Our observations likely represent tropospheric, strato-
spheric, and thermospheric infrasonic phases. We per-
formed 3D acoustic ray tracing to validate our findings,
using atmospheric data from ECMWF weather forecast
models. Tropospheric and thermospheric arrivals are to
some extent reproduced by the atmospheric model. How-
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ever, ray tracing does not at all predict the observed % v ¥ o ¥ Croatia , . . . :
acoustic stratospheric ducts. Our findings suggest that oo LoD AR - f\/ ———— —— ] A finery. The explosion was audible in several k||0.m'
small-scale variations had considerable impact on the 85° 10.5°E 125° 14.5°¢ | o ' S ~ eters distance and caused severe damage to build-
propagation of infrasound generated by the explosion. We acquired data from 400 broadband stations ings in neighboring villages.
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For each seismo-acoustic phase we evaluate the vertical peak ground
velocity (PGV) in the 1-2 Hz frequency band. In the maps above Loca | isaﬁon & Origi N -l-l me
150 k- colors indicate the PGV. Note that color scales are truncated at differ- =
- ent levels for each of the phases. The signal-to-noise ratio (SnR) is cal- | . i |
eloCItyY = m/s . eloCIty = m/s 144.7
Velocity = 5900 m/ s366 |n order to independently locate and time the Velocity = 335 m/

culated as (PGV / 30) from the standard deviation before the explo-
sion. All symbol sized are scaled by the SnR. We observe a SnR > 3 on
in total 84 different seismic stations within 350 km from the explo-
sion site, 35 of which are temporary AlpArray installations.
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9 stations that show the earliest arrivals of both
the seismic and the seismo-acoustic phase. We
manually picked the first onset of the seismic
P-arrival and the first onset of the seismo-
acoustic arrival. Both picks were independently
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B -rhases P | Modeling results and observations are in agreement for the tropospheric reflections. Yet, the signal with distance, compared to a numerical attenuation relation established by
o | ppp—— T raytracing approach is not able to reproduce any of the stratospheric reflections observed in the le Pichon et al. (2012). Data show large variations in amplitudes, but generally
data. Likely, local small scale atmospheric variations that are not represented in the smooth within 200 km from the source the seismo-acoustic amplitude attenuates by ap-
ECMWF model are the cause of the stratospheric reflections. Such heterogeneities may have de- proximately 1-2 orders of magnitude. This is much less than predicted by geomet-
0 veloped due to very weak stratospheric winds. ric spreading. Notably, we observe that seismo-acoustic amplitudes are consider-
ably larger on temporary installations compared to permanent seismic stations.

Unidirectional thermosphere reflections are predicted in all directions in contrast with our data
that shows potential reflections exclusively in azimuths from 0° (North) to 110° (South-East). Still, ConC| USionS
e the widespread detection of seismo-acoustic thermosphere signals is a novel observation.
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R f Seismo-acoustic signals of a refinery explosion tracked over 400 km by
ererences purely seismic instruments with 40 km spatial sampling.
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Location accuracy of 1 km using seismic and acoustic onset picks.
Determination of origin time with 1s precision.
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1240 Attenuation of seismo-acoustic signal similar to numerical simulations of

le Pichon et al. (2012), but with low attenuation in additional tropospheric duct.
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Pronounced spatial patterns of surface detections, which can only partly be
explained by simple acoustic raytracing.
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garten (Austria) gas explosion detected by the AlpArray seismic network, Earth and Qbservations Indicate presence of small scale'structures and hfeterogeneities
Planetary Science Letters, doi:10.1016/j.epsl.2018.08.034 in the atmosphere that strongly affect acoustic wave propagation.
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