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Talk outline

*The project

*The site

*The network

*The technique (isotropy and anisotropy)
*Modeling the isotropic structure

*The effect of anisotropy

*The deep structure
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KTB
IMGW

The project

KTB -- Kontinentales Tiefbohrprogramm der Bundesrepublik Deutschland
— or — German Continental Deep Drilling Program

Drilling project from 1987 to 1995

Located 50 km East of Nurnberg, close to the border of CZ, and on

the western flank of the Bohemian Massif , ,
[] Bohemian Massif

Chosen among 40 sites in Germany [ Other Variscan
basement outcrops

-Suspected to lie at the boundary of Moldanubian and Hamburg
Saxothuringian (MN and ST) units . Beriin
(continent-continent suture of 320 M.a.) *
RH" _ -~ “ST.. S
o L .Etma
- NUmberg, . -

- == " MN
KTB wellsite

-It represented a perfect occasion to understand the processes that
occur in the deep continental crust, normally inaccessible

-Suspected lower temperature gradient

-Expected max drill depth 10-12 km

9 km (max depth of drill) of metamorphic rocks (gneiss and metabasites) have been drilled

under a normal geothermal gradient 3
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The project

Our Project tasks:

*Compute receiver function out of data recorded at 9 stations
installed in the KTB area for 2 years (2012-2014)

*Find anisotropic signal on the receiver functions

Compare the RF data-set retrieved at the stations with the 9 km
pile of metamorphic rocks (alternating gneiss and metabasites)

Major questions:

*To which degree can the structure and anisotropy, previously
detected on-site, be retrieved by passive imaging?

*Which are the characteristics of the deeper structure, inaccessible
by drilling?
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The site

South German
Block
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KTB site is located in the northern
part of the “Zone Erbendorf-
Vohenstrauss” (ZEV)

ZEV is a small NW-SE to NNW-SSE
trending metamorphic unit

ZEV is composed of paragneiss and
metabasic rocks

The Erbendorf line separates the
Saxothuringicum from the
Moldanubicum units

The Franconian lineament is a NW-SE
trending crustal scale fault system
that has been repeatedly active
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The site

3D reconstruction The foliation of the ZEV rocks is
generally dipping to the SW.

Seismic reflections SE2 and SE1 were
met in the KTB boreholes in the depth
intervals 3.2-4 km and 6.8-7.3 km, and
represent brittle fault zones of the
Franconian Lineament (FL)

SE1 displaces Mesozoic sediments near
the surface, as well as the steeply SW
dipping, gneiss-metabasite alternation
of the ZEV; and also the subhorizontal
reflections of the Erbendorf Body (EB)
by at least 2-3 km

The boundaries between the different

T units are partly buried by the granites
" FE - of the Variscan Oberpfalz pluton
R Ty
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The station network
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The station network
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A KTB-IMGW net

*3 stations on ZEV

*Alignment of stations along KTB8501 and DEKORP
reflection profiles (1985) for comparison with previous
investigations
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The technique

Receiver Functions

A teleseismic P wave arrives vertically and is converted into an S wave

Allows to detect velocity contrasts at depth

P direct
We retrieve H and Vs of the layer i Ps converted
& ¢ ¢ &
Seismometer / “ ¢
Free Surface 3

4y |elpey

_— p Wave :', “. ':" l ,tlme (s) _’

Delay time between P and Ps is
proportional to:

- layer thickness (H)

- Vs inside the layer

Frassetto (2008)

Horizontal Interface Dipping Interface Anisotropic Layer
v v \4
; sV

P incident

P incident P incident

When 3D features are present in the subsurface structure, the Ps
signal is split in the Radial (SV) and Transverse (SH) components
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Modeling

Posterior sampling KW01

Trans-dimensional RF inversion

via Monte Carlo sampling
(Piana Agostinetti and Malinverno, 2010)

00

Aungeqoid
10

Prior information+observed data=PPD
Trans dimensional=No constraints on
number of layers

(4]

30.000.000 models extracted for the
posterior sampling

Joint inversion of RF

at different frequency cut-off x 4Hz
for absolute S-velocity profile g
(ISOTROPIC, 1D) o 2Hz
O
-g 1Hz
Frequency cut off at 4Hz—> L2
vertical resolution < 500m 0.5Hz
(for shallow layers)
Time [s]
For questions on the inversion technique go to Poster NS43A-3854, N. Delay time from direct-P 9
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Modeling

Vs models for the central stations located

on ZEV

. Posterior probability function (grey shading)
e Posterior mean model (red curve)
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Very similar Vs models
for these stations located
~3km apart

Very good fit between
observed (black) and
synthetic (red) stacked
radial 10
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KTB

IMGW
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ZOOM in the SHALLOW STRUCTURE
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Modeling

SYNTHETIC RF
R T
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Anisotropy

EFFECT of DIPPING INTERFACES and INCLINED ANISOTROPY

Geological Model > Geophysical Model > Predicted Receiver functions
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Deeper structure

For larger delay times we can explore the deeper structures and compare them with previous results from active seismic investigations

KTB8501
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Features apparent in the wide
angle profile:

*Different reflectivity between
sediments and granites

*SE1

*Erbendorf body (EB)

*2 zones of high reflectivity

: : dislocated by the SE1
Emmermann and Lauterjung (1997) *Moho

Depth (km)

Features apparent in the receiver functions:
*Differentiate between sediments, ZEV and granites:
*Typical broadening of P-direct pulse for sediments
*Below ZEV we recognize the stratification
*No stratification in the granitic body
*Follow SE1 below ZEV and granites
*|dentify top and Bottom (?) of Erbendorf Body (EB)
*Similarity of the positive jumps at 1.5-2 s with the 2 zones of high
reflectivity seen in KTB8501
*Reconstruct Moho geometry (shallower below ZEV)
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Conclusions

*KTB represents a unique chance for testing passive techniques by knowledge of in-situ
structures

*We run a passive seismic experiment for 2 years in the KTB area
*Retrieve the receiver functions for the 9 stations deployed

*From the stack of the Radial component of the RF we retrieve a S-wave velocity model
that shows good correspondence to the P-velocities from sonic logs

*We compute synthetic RF including the effect of dipping layers and of anisotropy from
on site observations and get a qualitative comparison with the data

*Can we obtain a quantitative comparison?
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Thank you for your attention!

Contact: irene.bianchi@univie.ac.at

DI33A-4296 Slab Detachment Under the Eastern Alps Seen By Seismic Anisotropy
Wednesday, December 17, 2014, 01:40 PM - 06:00 PM , Moscone South-Poster Hall

DI33A-4295 Anisotropic Structure of the Upper Mantle in the Carpathian-Pannonian Region: From SKS Splitting data and Xenolith Constraints
Wednesday, December 17, 2014, 01:40 PM - 06:00 PM , Moscone South-Poster Hall
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