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Abstract Seismic stations The incident: Refinery explosion near Ingolstadt (sermany)

The explosion site lies 10 km south of
the Grafenberg array and is well cov-
ered by temporary broadband stations
of the AlpArray seismic network with
station spacing of 40 km.

On the first of September 2018, a devastating explosion
occurred on the facility of an oil refinery near Ingolstadt,
Germany. We analyzed data of 400 permanent and tem-
porary seismic stations within 400 km radius from the ex-
plosion site and find strong seismo-acoustic signals on
more than 80 seismic stations. Thanks to the dense spa-
tial coverage of the AlpArray seismic network, the infra-
sound signal generated by the explosion is detectable
within 10 - 400 km from the source, with high spatial reso-
lution.
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The high spatial sampling reveals a pronounced spatial
pattern. The event can be localized both by seismic and
seismo-acoustic picks, yet the seismo-acoustic location
results are significantly more precise. Seismo-acoustic
amplitudes are strongly station-dependent, and are af-
fected by the type of installation. Still, the uniform spatial
coverage allows us to study the regional infrasound at-
tenuation. We identified three separate acoustic phases
with celerities of 332, 292 and 250 m/s, respectively; they
probably represent tropospheric, stratospheric, and ther-
mospheric phases, with each of them having its particular
propagation direction.

On September 1st, 2018 a devastating explosion hit
the facilities of a refinery of BayernOil in the town of
Vohburg, near Ingolstadt in Bavaria, Germany. Local
newspapers reported the origin time of the explosion
between 03:00 and 03:15 UTC. 10 people were in-
Bs jured and 2000 people were evacuated from their
homes in the vicinity of the refinery.

Our findings highlight that regional infrasound propaga-
tion can be strongly anisotropic due to winds, and that

the detection of such events strongly depends on station
density and geometry. We acquired data from 400 broadband stations
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