stefano.serafin(at)univie.ac.at
Josef-Holaubek-Platz 2 (UZA II), 1090 Vienna
Roomnumber: 2G556
T: +43-1-4277-537 13

- 2020: Senior Scientist, University of Vienna
- 2018: National scientific qualification (Italy), disciplines 04/A4 (Geophysics) and 02/C1 (Astronomy, Astrophysics, Earth and Planetary Sciences)
- 2018: Project leader, University of Innsbruck
- 2010: Assistant professor, University of Vienna
- 2006: Doctorate in Environmental Engineering, University of Trento (Italy)
- 2002: Project scientist, CETEMPS/University of L'Aquila (Italy)
- 2002: Degree in Environmental Science, University of Milano-Bicocca (Italy)
- Complete curriculum vitae
Research Interests
- Mountain meteorology
- Dynamic meteorology
- Numerical weather prediction
- Boundary-layer meteorology
Projects
- 2024-2028: FWF (Austrian Science Fund) Stand-alone project P 37259, "DEmonstrating Parameter Estimation with eNsemble-based Data Assimilation for Boundary-Layer modElling over mountains"
- 2018-present: TEAMx (Multi-scale transport and exchange processes in the atmosphere over mountains – Programme and experiment)
- 2018-2022: FWF (Austrian Science Fund) Stand-alone project P 30808, "Multiscale Interactions in Convection Initiation in the Alps"
- 2012-2015: FWF (Austrian Science Fund) Stand-alone project P 24726, "STABLEST: Stable boundary layer separation and turbulence"
Links
- ORCID / ResearcherID / Scopus profiles
- Department of Atmospheric and Cryospheric Sciences (ACINN), University of Innsbruck
- Department of Civil, Environmental and Mechanical Engineering, University of Trento
- CETEMPS, University of L'Aquila
Publications
A pan-Alpine climatology of lightning and convective initiation.
- Author(s)
- Agostino Manzato, Stefano Serafin, Mario Marcello Miglietta, Daniel J. Kirshbaum, Wolfgang Schulz
- Abstract
A new lightning-flash and convective initiation climatology is developed over the Alpine area, one of the hotspots for lightning activity in Europe. The climatology uses cloud-to-ground (CG) data from the European Cooperation for Lightning Detection (EUCLID) network, occurring from 2005 to 2019. The CG lightning data are gridded at a resolution of approximately 2 km and 10 min. A new and simple method of identifying convective initiation (CI) events applies a spatiotemporal mask to the CG data to determine CI timing and location. Although the method depends on a few empirical thresholds, sensitivity tests show the results to be robust. The maximum activity for both CG flashes and CI events is observed from mid-May to mid-September, with a peak at the end of July; the peak in the diurnal cycle occurs in the afternoon. CI is mainly concentrated over and around the Alps, particularly in northern and northeastern Italy. Since many thunderstorms follow the prevailing midlatitude westerly flow, a peak of CG flashes extends from the mountains into the plains and coastal areas of northeastern Italy and Slovenia. CG flashes and CI events over the sea/coast occur less frequently than in plains and mountains, have a weaker diurnal cycle, and have a seasonal maximum in autumn instead of summer.
- Organisation(s)
- Department of Meteorology and Geophysics
- External organisation(s)
- ARPA FVG–OSMER, Instituto di Scienze dell'Atmosfera e del Clima, McGill University, Austrian Lightning Detection and Information System
- Journal
- Monthly Weather Review
- Volume
- 150
- Pages
- 2213-2230
- No. of pages
- 18
- ISSN
- 0027-0644
- DOI
- https://doi.org/10.1175/MWR-D-21-0149.1
- Publication date
- 09-2022
- Peer reviewed
- Yes
- Austrian Fields of Science 2012
- 105204 Climatology
- Keywords
- ASJC Scopus subject areas
- Atmospheric Science
- Portal url
- https://ucrisportal.univie.ac.at/en/publications/5048c4b3-dba1-401e-b7ae-5a135219dd34
