stefano.serafin(at)univie.ac.at
Josef-Holaubek-Platz 2 (UZA II), 1090 Vienna
Roomnumber: 2G556
T: +43-1-4277-537 13

- 2020: Senior Scientist, University of Vienna
- 2018: National scientific qualification (Italy), disciplines 04/A4 (Geophysics) and 02/C1 (Astronomy, Astrophysics, Earth and Planetary Sciences)
- 2018: Project leader, University of Innsbruck
- 2010: Assistant professor, University of Vienna
- 2006: Doctorate in Environmental Engineering, University of Trento (Italy)
- 2002: Project scientist, CETEMPS/University of L'Aquila (Italy)
- 2002: Degree in Environmental Science, University of Milano-Bicocca (Italy)
- Complete curriculum vitae
Research Interests
- Mountain meteorology
- Dynamic meteorology
- Numerical weather prediction
- Boundary-layer meteorology
Projects
- 2024-2028: FWF (Austrian Science Fund) Stand-alone project P 37259, "DEmonstrating Parameter Estimation with eNsemble-based Data Assimilation for Boundary-Layer modElling over mountains"
- 2018-present: TEAMx (Multi-scale transport and exchange processes in the atmosphere over mountains – Programme and experiment)
- 2018-2022: FWF (Austrian Science Fund) Stand-alone project P 30808, "Multiscale Interactions in Convection Initiation in the Alps"
- 2012-2015: FWF (Austrian Science Fund) Stand-alone project P 24726, "STABLEST: Stable boundary layer separation and turbulence"
Links
- ORCID / ResearcherID / Scopus profiles
- Department of Atmospheric and Cryospheric Sciences (ACINN), University of Innsbruck
- Department of Civil, Environmental and Mechanical Engineering, University of Trento
- CETEMPS, University of L'Aquila
Publications
A mesoscale model-based climatography of nocturnal boundary-layer characteristics over the complex terrain of north-western Utah
- Author(s)
- Stefano Serafin, Stephan F. J. De Wekker, Jason Knievel
- Abstract
Nocturnal boundary-layer phenomena in regions of complex topography are extremely diverse and respond to a multiplicity of forcing factors, acting primarily at the mesoscale and microscale. The interaction between different physical processes, e.g., drainage promoted by near-surface cooling and ambient flow over topography in a statically stable environment, may give rise to special flow patterns, uncommon over flat terrain. Here we present a climatography of boundary-layer flows, based on a 2-year archive of simulations from a high-resolution operational mesoscale weather modelling system, 4DWX. The geographical context is Dugway Proving Ground, in north-western Utah, USA, target area of the field campaigns of the MATERHORN (Mountain Terrain Atmospheric Modeling and Observations Program) project. The comparison between model fields and available observations in 2012–2014 shows that the 4DWX model system provides a realistic representation of wind speed and direction in the area, at least in an average sense. Regions displaying strong spatial gradients in the field variables, thought to be responsible for enhanced nocturnal mixing, are typically located in transition areas from mountain sidewalls to adjacent plains. A key dynamical process in this respect is the separation of dynamically accelerated downslope flows from the surface.
- Organisation(s)
- Department of Meteorology and Geophysics
- External organisation(s)
- University of Virginia, Rutherford Appleton Laboratory
- Journal
- Boundary-Layer Meteorology
- Volume
- 159
- Pages
- 495-519
- No. of pages
- 25
- DOI
- https://doi.org/10.1007/s10546-015-0044-6
- Publication date
- 06-2016
- Peer reviewed
- Yes
- Austrian Fields of Science 2012
- 105206 Meteorology
- Keywords
- ASJC Scopus subject areas
- Atmospheric Science
- Portal url
- https://ucrisportal.univie.ac.at/en/publications/30b658cb-58ab-4f11-bcb9-6f8aa4d43708
