stefano.serafin(at)univie.ac.at
Josef-Holaubek-Platz 2 (UZA II), 1090 Vienna
Roomnumber: 2G556
T: +43-1-4277-537 13

- 2020: Senior Scientist, University of Vienna
- 2018: National scientific qualification (Italy), disciplines 04/A4 (Geophysics) and 02/C1 (Astronomy, Astrophysics, Earth and Planetary Sciences)
- 2018: Project leader, University of Innsbruck
- 2010: Assistant professor, University of Vienna
- 2006: Doctorate in Environmental Engineering, University of Trento (Italy)
- 2002: Project scientist, CETEMPS/University of L'Aquila (Italy)
- 2002: Degree in Environmental Science, University of Milano-Bicocca (Italy)
- Complete curriculum vitae
Research Interests
- Mountain meteorology
- Dynamic meteorology
- Numerical weather prediction
- Boundary-layer meteorology
Projects
- 2024-2028: FWF (Austrian Science Fund) Stand-alone project P 37259, "DEmonstrating Parameter Estimation with eNsemble-based Data Assimilation for Boundary-Layer modElling over mountains"
- 2018-present: TEAMx (Multi-scale transport and exchange processes in the atmosphere over mountains – Programme and experiment)
- 2018-2022: FWF (Austrian Science Fund) Stand-alone project P 30808, "Multiscale Interactions in Convection Initiation in the Alps"
- 2012-2015: FWF (Austrian Science Fund) Stand-alone project P 24726, "STABLEST: Stable boundary layer separation and turbulence"
Links
- ORCID / ResearcherID / Scopus profiles
- Department of Atmospheric and Cryospheric Sciences (ACINN), University of Innsbruck
- Department of Civil, Environmental and Mechanical Engineering, University of Trento
- CETEMPS, University of L'Aquila
Publications
Atmospheric rotors and severe turbulence in a long deep valley
- Author(s)
- Stefano Serafin, Lukas Strauss, Vanda Grubisic
- Abstract
The conceptual model of an atmospheric rotor is reexamined in the context of a valley, using data from the Terrain-Induced Rotor Experiment (T-REX) conducted in 2006 in the southern Sierra Nevada and Owens Valley, California. All T-REX cases with strong mountain-wave activity have been investigated, and four of them (IOPs 1, 4, 6, and 13) are presented in detail. Their analysis reveals a rich variety of rotorlike turbulent flow structures that may form in the valley during periods of strong cross-mountain winds. Typical flow scenarios in the valley include elevated turbulence zones, downslope flow separation at a valley inversion, turbulent interaction of in-valley westerlies and along-valley flows, and highly transient mountain waves and rotors. The scenarios can be related to different stages of the passage of midlatitude frontal systems across the region. The observations from Owens Valley show that the elements of the classic rotor concept are modulated and, at times, almost completely offset by dynamically and thermally driven processes in the valley. Strong lee-side pressure perturbations induced by large-amplitude waves, commonly regarded as the prerequisite for flow separation, are found to be only one of the factors controlling rotor formation and severe turbulence generation in the valley. Buoyancy perturbations in the thermally layered valley atmosphere appear to play a role in many of the observed cases. Based on observational evidence from T-REX, extensions to the classic rotor concept, appropriate for a long deep valley, are proposed.
- Organisation(s)
- Department of Meteorology and Geophysics
- External organisation(s)
- National Center for Atmospheric Research (NCAR)
- Journal
- Journal of the Atmospheric Sciences
- Volume
- 73
- Pages
- 1481-1506
- No. of pages
- 26
- ISSN
- 0022-4928
- DOI
- https://doi.org/10.1175/JAS-D-15-0192.1
- Publication date
- 04-2016
- Peer reviewed
- Yes
- Austrian Fields of Science 2012
- 105206 Meteorology
- Keywords
- ASJC Scopus subject areas
- Atmospheric Science
- Portal url
- https://ucrisportal.univie.ac.at/en/publications/08f6ee6d-3ba0-4a2a-953d-c5aa66c192e8
