Upper Mantle Discontinuity Below the Eastern Alps

Bianchi, L., Miller, M. S., Bokelmann, G.1

1 Universität Wien, Institut für Meteorologie und Geophysik, 1090 Wien, Austria
2 Department of Earth Sciences, University of Southern California, Los Angeles CA 90039-0740, USA

Abstract
Analysis of Ps and Sp receiver functions from datasets collected by permanent and temporary seismic stations, image for the first time lithospheric discontinuities across the entire Eastern Alps with a resolution of tens of kilometers laterally. The receiver functions show the presence of a discontinuity, bounding a low velocity channel, within the upper mantle. The detected discontinuity is deeper (100-130 km) below the central portion of the Eastern Alps, and shallower (70-80 km) towards the Pannonian Basin and in the Central Alps. The comparison renders it likely that the observed discontinuity represents the lithosphere-asthenosphere boundary. This sheds light on the formation and evolution of the Alps, being a result of long-term convergence between the European and Adriatic plates. Previous studies have suggested that the architecture of the eastern portion of the Alpine collision has been affected by lateral (east directed) tectonic extrusion. Here we confirm with our newly resolved upper mantle discontinuity that both mechanisms are reflected in the structure we image. These new images aid in deciphering and decoupling plate motions from lateral extrusion of the Eastern Alps towards the Pannonian Basin. The lateral variations in lithosphere thickness mirror these two processes and provide us with a better understanding the Alpine tectonics.

METHOD: P- and S- RECEIVER FUNCTION

P and S receiver function results evidence for a shallow discontinuity in the mantle below the Eastern Alps. The results for the two different methodologies are strikingly similar.

Here a comparison between P- and SRF datasets computed for data recorded at the station KBA is shown. a) PRF displayed according to backazimuth. b) Stack of the PRF from a). c) Depth migrated stacked PRF. d) Rose diagram showing the sampled backazimuth directions for tellurics used to calculate the SRF. e) SRF displayed according to the origin backazimuth. f) Stack of SRFs from e).

Both data-set show a velocity inversion in the upper mantle. The velocity inversion depth estimate is 112 km for the stacked PRF, and 120 km for the SRFs.

STATIONS AND DATA DISTRIBUTION

Topographic map of the Eastern Alps, including seismic station locations. Light blue circles show broadband permanent stations from different national networks and squares for temporary stations. Yellow diamonds show stations used in Miller & Piana Agostinetti (2012). Gray crosses are the piercing points at 100 km depth for PRF. Black crosses are piercing points at 100 km for SRF. The inset shows the study area location in Central Europe.

Event distribution at station ACOM for SRFs (154 events), and for S6 from profile BB’ for the PRFs (371 events).

DATA ALONG PROFILE SHOW DEPTH VARIATIONS

SRF stacks for the permanent stations along profiles DD’ and EE’ Star indicates the inter- preted discontinuity depth at each station. SRFs were computed following the methodology described in detail in Levander and Miller (2012).

Using both SRF and PRF analyses, we detect a negative impedance contrast generated atop of a low velocity layer in the upper mantle, that likely corresponds to the bottom of the lithosphere (lithosphere-asthenosphere boundary or LAB).

The dense distribution of temporary stations allows for a clear interpretation of lateral depth variations over length scales of several tens of kilometers, and are supported by depth estimates from permanent stations. We image the deepening of a low velocity channel in the central Alps, and its rise towards the east.

LITHOSPHERE THICKNESS

Lithosphere thickness under the Eastern Alps. Circles for depths inferred from this study, diamonds for depths from Miller and Piana Agostinetti 2012. pal = periadriatic line. Variations in lithospheric thickness occur over length scales of several tens of kilometers beneath the Alpine chain. The thicker lithosphere is affected by the presence of the downwelling slab, and in the fartheastern Alps the lithosphere is thinned by the dextral extrusion of the Eastern Alps towards the Pannonian Basin.

COMPARISON WITH OTHER OBSERVATIONS

Interpreted lithosphere thickness compared to a) MoHo depths and plate boundaries from Brückl et al. (2010), where PA is the Pannonian plate, EU is the Eurasian plate, and AE is the Adriatic plate. b) tomographic anomalies from Lipitzsch et al. (2003). c) 5KS splitting directions are shown. b) seismic stations, and SRFPRF from Bokelmann et al. (2013) and black bars (Wustefeld et al., 2009). d) Surface heatflow (Artemieva et al. 2006).

SUMMARY
Both Ps and Sp converted energy independently confirm the existence of a discontinuity that correlates with the lithosphere-asthenosphere boundary. PRF offer a valid support to the SRF results in those areas where permanent stations are lacking.

This study adds details and points out the depth variations of the lithosphere system: EA: ~120-130 km depth; SA: ~100-110 km depth; MB: ~100 km depth; BM: ~90 km depth; CA: ~80-90 km depth; PB: ~70-80 km depth.

Depth variation reflect the depth extent of the eastward extrusion of the EA towards the Pannonian Basin.

REFERENCES